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1 Introduction 

Active fund management industry (AFMI) investors seek excess returns over passive 

indices by allocating wealth, based on preference, to AFMI managers, who implement costly 

portfolio strategies and charge fees.1 This implies that, in AFMI buyers (investors) determine 

the quantity of production (investment amount). The producers (fund managers), with fixed 

prices (management fees), stimulate production quantities to increase profits. These features 

make AFMI different from classical production industries, in which producers determine 

product prices and production quantities, and buyers decide the quantities they buy. As AFMI 

manages a huge amount of wealth, 2  studying AFMI structure, in particular its dynamic 

concentration, offers significant economic insights. 

Current literature has shown that AFMI concentration has significant impact on AFMI 

size and performance [Feldman, Saxena, and Xu (2020, 2021)], implying that AFMI 

concentration dynamics exert significant effects on AFMI over time. However, there have been 

few studies of AFMI concentration dynamics. Our goal is to fill this gap. 

We develop a continuous-time framework to model AFMI with multiple heterogeneous 

active equity funds. Fund managers’ abilities to create excess returns over a passive benchmark 

return (gross alpha) are dynamic and unobservable for both investors and managers. Both infer 

these abilities by observing fund returns (hereafter, we call the estimates of these abilities as 

inferred abilities).3 AFMI has decreasing returns to scale in the sense that funds’ total costs are 

increasing and convex in the size of assets under active management. Managers set constant 

management fees and, over time, maximize fund profits by dynamically choosing the size of 

wealth they actively manage to determine fund net alpha.4  Risk-neutral investors supply 

 
1 See, for example, Berk and Green (2004) and Berk (2005). 
2 According to the Investment Company Institute (ICI), the total net assets of worldwide regulated open-end funds 
(including mutual funds, exchange-traded funds, and institutional funds) were $63.1 trillion in 2020. See the 2021 
Investment Company Fact Book at the ICI website, https://www.ici.org/system/files/2021-05/2021_factbook.pdf, 
accessed on October 12th, 2021. 
3 The active funds’ observable gross alphas follow Itô processes in which the drift terms depend on the dynamic 
unobservable manager ability levels. These ability levels also follow Itô processes. Their diffusions are (locally, 
imperfectly) correlated with those of funds’ gross alpha processes. 
4 Berk and Green (2004) shows that the case in which the fund manager actively manages the whole fund and 
chooses the management fee at each time is equivalent to the case in which the fund manager chooses the amount 
of the fund to actively manage at each time under a fixed management fee. As the latter case is more realistic, we 
focus on it to conduct our analyses. 
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capital with infinite elasticity to funds that offer positive expected net alphas; due to decreasing 

returns to scale, investments drive expected net alphas to zero. 

Fund managers differentiate themselves by their inferred abilities. In equilibrium, a 

fund’s size and, thus, profit is increasing and convex in its manager’s inferred ability.5 This 

implies that in equilibrium, better managers manage larger funds and receive larger rewards. 

In our model and AFMI models in current literature,6  many common measures of 

AFMI’s industrial organization are less informative than the concentration measure that we use. 

For example, as fund costs are transferred to investors as deductions in fund returns, a fund’s 

profit margin (the difference of revenue and costs, divided by the revenue) and Lerner Index 

(the difference of fee and marginal cost, divided by fee) are equal to one. As profit margin and 

Lerner Index are indicators of funds’ profitability and market power, respectively, the above 

results imply that there are no dynamics in the measures of funds’ profitability and market 

power. This makes AFMI’s concentration dynamics a main attribute in studying the AFMI’s 

industrial organization dynamics. 

We use the Herfindahl-Hirschman index (HHI) to measure AFMI concentration, which 

is the sum of funds’ market shares squared,7  for several reasons. First, HHI reflects the 

combined influence of both unequal fund sizes and the concentration of activity in a few large 

funds, so it has advantage over other concentration measures, such as a concentration ratio, 

which only sums up the market shares of a few largest funds and ignores the information of 

other funds. Second, some regulatory agencies use HHI to measure concentration.8 Third, HHI 

is a common measure of concentration in current theoretical and empirical studies.9 Fourth, 

 
5 The intuition is that to maximize fund profit with a fixed fee, a fund manager tries to attract as much investment 
as possible by offering positive expected net alpha to investors. Under decreasing returns to scale, the manager’s 
inferred ability determines the expected net alphas that he/she can produce and then determines the equilibrium 
fund size. A manager with higher inferred ability puts a larger amount of the fund under active management to 
offer higher expected net alpha, and investors respond to this higher inferred ability more intensively when 
investing in this fund. 
6 See, for example, Berk and Green (2004), Choi, Kahraman, and Mukherjee (2016), Brown and Wu (2016), and 
Feldman and Xu (2022), which define fund returns to investors as fund gross returns minus fund costs and fees. 
7 A higher (lower) HHI implies a more (less) concentrated AFMI. The highest value of HHI is one, which implies 
a monopolistic AFMI. The lowest value of HHI is the inverse of the number of funds, which implies homogeneous 
funds in the AFMI. 
8 For example, the U.S. Census calculates industry concentration as HHI, used by regulatory agencies such as the 
Federal Trade Commission and Department of Justice [e.g., Ali, Klasa, and Yeung (2009) and Azar, Schmalz, and 
Tecu (2018)]. 
9 See, for example, theoretical models, such as Bustamante and Donangelo (2017) and Corhay, Kung, and Schmid 
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new concentration measures are calculated based on HHI. For example, the normalized 

Herfindahl-Hirschman index adjusts the effects of the number of rivals,10 and the modified 

Herfindahl-Hirschman index captures the concentrations of producers and of shareholders’ 

ownership.11 

In equilibrium, managers’ relative inferred abilities, sensitivities of gross alphas to 

abilities, and fund size factors (each of which equals the inverse of the product of a fund’s 

management fee and decreasing returns to scale parameter), together determine the equilibrium 

AFMI HHI (hereafter, briefly, HHI). The heterogeneity in these parameters and their values 

relative to each other are relevant in studying HHI. More importantly, fund managers’ inferred 

abilities are dynamic, which drive the dynamics of HHI over time. Therefore, our model offers 

new insights in HHI over those implied by the model of Feldman, Saxena, and Xu (2020), 

which shows that HHI is a function of the constant decreasing returns to scale parameters in 

the one-period fixed-point equilibrium. 

Our first prediction on HHI dynamics is that if a manager’s inferred ability is 

sufficiently large (small) relative to those of other managers, 12  then an increase in this 

manager’s inferred ability due to positive performance shock and/or positive ability drift, has 

a positive (negative) impact on the dynamics of HHI. The reason is that if a manager’s inferred 

ability is sufficiently large, then the fund’s equilibrium size is sufficiently large compared to 

other funds. Even higher inferred ability attracts more investments to this fund, making AFMI 

more concentrated. On the other hand, if a manager’s inferred ability is sufficiently small, then 

the fund’s equilibrium size is sufficiently small relative to other funds. A higher inferred ability 

attracts more investment to this fund, making its size closer to that of other funds and making 

AFMI less concentrated. 

Our second prediction is that, if a manager’s inferred ability is sufficiently large (small) 

 
(2020), that study firm concentration, and Feldman, Saxena, and Xu (2020, 2021) that study AFMI concentration; 
and see empirical models, such as Cornaggia, Mao, Tian, and Wolfe (2015), that study labor concentration and 
industry concentration, Spiegel and Tookes (2013) and Gu (2016) that study product market concentration, and 
Giannetti and Saidi (2019) that study credit concentration. 
10 See, for example, Cremers, Nair, and Peyer (2008). 
11  See, for example, O’Brien and Salop (2000), Azar, Schmalz, and Tecu (2018), and Koch, Panayides, and 
Thomas (2021). 
12 The inferred ability level that is sufficiently large (small) is determined by an interesting relation involving the 
fund size, AFMI size, and the sum of squares of AFMI fund sizes. Please see Corollary RN2.1 below. 
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relative to other managers, a higher performance variation of this manager mitigates the 

positive (negative) impact induced by a positive shock in this manager’s performance on the 

dynamics of HHI. The reason is that if a manager’s performance variation is higher, then 

investors allocate smaller weights to this manager’s performance shocks when learning about 

his or her ability. Consequently, investment flows react less intensively to a positive shock in 

this manager’s performance, which mitigates the positive (negative) impact of this positive 

shock on the dynamics of HHI. 

We further extend our model to allow sensitivities of gross alphas to manager abilities 

to be decreasing functions of stock market volatility. We make this assumption because higher 

stock market volatility increases market stress and redemption risk, which induces managers 

to prepare a larger cash buffer and impedes managers in implementing strategies to create 

abnormal returns [Jin, Kacperczyk, Kahraman, and Suntheim (2022)]. Consequently, fund 

gross alphas are less related to manager abilities and more related to luck. This setting makes 

our framework a nonlinear one and enables us to study the effect of stock market volatility on 

HHI.13 We find that higher stock market volatility decreases all funds’ sizes. As changes in 

large funds’ sizes exert a large impact on the dynamics of HHI, the aggregate effect of higher 

stock market volatility on the dynamics of HHI is negative when extremely large funds exist 

(making the fund size distribution highly skewed to the right). This is our third prediction on 

HHI dynamics. 

Moreover, we examine the special case where managers’ unobservable abilities are 

constant and associate with gross alphas within a linear framework. Over time, the estimation 

precisions of inferred abilities monotonically increase and the sensitivities of inferred abilities 

to performance shocks monotonically decrease. As time goes to infinity, AFMI reaches a steady 

state in which investors know managers’ abilities (managers’ inferred abilities stay unchanged). 

Consequently, investments in funds stay unchanged, making HHI constant. As this result are 

 
13  In our baseline model, the coefficients of the Itô processes of observable gross alphas and unobservable 
manager abilities are constant, so it is a linear framework requiring linear filtering techniques to solve it. Linear 
frameworks in the current literature, such as Berk and Green (2004) and their followers, cannot directly model the 
effects of economic factors on gross alphas/manager abilities as we do in our nonlinear framework. Our nonlinear 
framework requires nonlinear filtering techniques to solve it. 
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incompatible with empirical findings that HHI is dynamic in the long term, 14  linear 

frameworks with constant manager abilities15 do not explain the empirical dynamics of HHI. 

We demonstrate that our results hold for the case where investors are mean-variance 

risk averse who maximize portfolio instantaneous Sharpe ratios. We find that investors’ risk 

considerations decrease equilibrium fund sizes. However, the way to compare fund sizes 

relative to those of others does not depend on investors’ risk considerations, so the dynamics 

of HHI relates to managers’ relative inferred abilities in a way similar to that in the case of risk-

neutral investors. 

We also show that our model is compatible with effects of fund entrances and exits on 

HHI. We allow the total number of funds to change over time and set funds’ survival levels of 

their managers’ inferred abilities to zero [that is, funds exit (enter) the market if their managers’ 

inferred abilities decrease (increase) to zero.16] We show that under this setting, fund entrances 

and exits do not affect the dynamics of HHI immediately, but they change the set of funds in 

AFMI and affect the dynamics of HHI after that. 

To empirically test our three theoretical predictions, we use the active equity mutual 

fund data from the Center for Research in Security Prices (CRSP). Our sample period is 

January 1990 to December 2020, and we use monthly data. First, we define the big-fund group 

as the five funds that have the largest sizes, and the small-fund group as the funds with fund 

size values from the fifth percentile to the tenth percentile. These funds are likely to be 

sufficiently large and sufficiently small, respectively, relative to other funds, and can be used 

to test our theoretical predictions. Second, we define the shocks in these two groups’ 

performances relative to those of other funds as the changes of these groups’ market shares in 

the previous month because funds’ market shares indicate their managers’ inferred abilities 

relative to those of other funds, as shown in our model. 

Third, to develop measures of performance variation, we use 24-month rolling windows 

 
14 See the empirical results of the dynamics of HHI, for example, in Feldman, Saxena, and Xu (2020, 2021), and 
those in our empirical study section. 
15  Regarding these frameworks, see, for example, Berk and Green (2004), Choi, Kahraman, and Mukherjee 
(2016), and Brown and Wu (2016). 
16 These survival levels of inferred abilities can be regarded as those endogenously chosen by profit-maximizing 
managers. This is because funds with positive inferred abilities earn positive equilibrium profits and optimally 
choose to stay in the market to earn the profits, whereas without short selling of assets, funds with negative inferred 
abilities optimally choose to put zero assets under active management to avoid losses and exit AFMI. 
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to estimate one-month-ahead fund net alphas for each fund over time, using the five-factor 

model developed by Fama and French (2015) and the four-factor model developed by Fama 

and French (1993) and Carhart (1997). We develop three measures of performance variation. 

Following Amihud and Goyenko (2013), our first measure is the 1 − 𝑅   in each rolling-

window regression, which is equal to the residual sum of squares divided by the total sum of 

squares.17 As the residuals in each factor model regression can be regarded as the in-sample 

estimates of abnormal returns, 1 − 𝑅   can be regarded as the in-sample estimate of fund 

performance variation (normalized by total variation of the dependent variable). Our second 

and third measures of performance variation are the standard deviation of fund net alpha and 

of fund gross alpha, respectively, where fund gross alpha is fund net alpha plus annual expense 

ratio divided by 12. These two measures are the performance volatility measures used by 

Huang, Wei, and Yan (2021). Forth, similar to the current literature, such as Jin, Kacperczyk, 

Kahraman, and Suntheim (2022), we choose the option-implied volatility index (VIX) as our 

measure of stock market volatility. 

We find that the flow–net alpha sensitivity significantly decreases with the VIX level, 

consistent with the finding in Jin, Kacperczyk, Kahraman, and Suntheim (2022), and 

significantly decreases with our measures of performance variation, consistent with the finding 

in Huang, Wei, and Yan (2021). Results of these fund-level analyses are consistent with our 

theory, and indicate that our measures effectively capture stock market volatility and fund 

performance variations. We also empirically show that some extremely large funds exist in the 

market, so by our theory, we expect that a higher VIX level decreases HHI. 

In testing our predictions, we regress the change in HHI on the lagged changes in the 

VIX level and in the market shares of the big-fund group and small-fund group. We find that 

an increase in VIX significantly decreases HHI, showing that higher stock market volatility 

exerts a negative aggregate impact on HHI. Also, an increase in the big-fund group’s market 

share significantly increases HHI, showing that a positive shock in this group’s relative 

performance induces positive impact on the change of HHI. This positive impact is smaller 

when this group’s performance variation is higher, as the interaction term of the big-fund 

 
17 Amihud and Goyenko (2013) demonstrate that this 1 − 𝑅  measure is highly related to fund performance. 
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group’s change of market share and performance variation is significantly negative. Also, the 

coefficient of the change in the market share of the small-fund group is negative but 

insignificant; however, the interaction term of the small-fund group’s change of market share 

and performance variation is significantly positive. This implies that this group’s performance 

variation is likely to mitigate the impact of the shocks in this group’s relative performance on 

the dynamics of HHI. Our results are robust to different measures of change in stock market 

volatility, different classifications of the big-fund group and small-fund group, and different 

estimation methods of the regression models. In general, our empirical results are consistent 

with our theoretical predictions. 

We also find additional empirical results of HHI that support our theory and that are 

consistent with those in the literature. For example, we find that HHI of the U.S. active equity 

mutual fund market fluctuates over the last few decades and does not converge, consistent with 

a framework with dynamic unobservable manager abilities and inconsistent with a framework 

with constant such abilities where HHI converges. Also, we find that from the early 1990s to 

the early 2000s, the number of funds keeps increasing whereas HHI keeps decreasing. This is 

consistent with the fact that in this period, AFMI incumbents that have a high overlap in their 

portfolio holdings with those of new entrants experience lower fund flows and lower alphas 

[Wahal and Wand (2011)], and with the fact that there is a decrease in fund manager 

performance in similar periods [Kosowski, Timmermann, Wermers, and White (2006) and 

Fama and French (2010)]. The reason is that as new funds hold portfolios similar to those of 

the incumbents, it is more difficult for funds to outperform each other, so fund managers’ 

inferred abilities become close to each other, inducing more similar fund sizes and a lower HHI. 

Contribution to the Literature 

Based on the above, we summarize our contributions to the literature. First, to our best 

knowledge, we develop the first model of equilibrium dynamic AFMI concentration under a 

framework of multiple heterogeneous managers with dynamic unobservable abilities. We 

theoretically show how AFMI concentration (competitiveness) evolves with different factors, 

and show that our results hold whether investors are risk neutral or mean-variance risk averse, 

and under funds’ entrances and exits. This complements the literature on the competitiveness 

of AFMI [e.g., Pastor and Stambaugh (2012), and Feldman, Saxena, and Xu (2020, 2021)]. 
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Second, novel to the literature, we provide empirical evidence of how relative fund 

performances, performance variations, and stock market volatility drive AFMI HHI dynamics. 

This evidence supports our theory. Our empirical findings relate to current literature on AFMI 

performance, volatility, and market stress [e.g., Amihud and Goyenko (2013), Huang, Wei, and 

Yan (2021), Jin, Kacperczyk, Kahraman, and Suntheim (2022)]. 

Third, we show that our model explains stylized findings in AFMI concentration, size, 

and performance in a compatible way [e.g., Kosowski, Timmermann, Wermers, and White 

(2006), Fama and French (2010), and Wahal and Wand (2011)]. 

Forth, we further demonstrate that a nonlinear framework of manager abilities and gross 

alphas explain and predict AFMI HHI dynamics better than a linear framework. We show that 

using our nonlinear framework, we can easily model effects of economic factors, such as stock 

market volatility, on the dynamics of HHI; linear frameworks that are commonly used in the 

current literature, such as those of Berk and Green (2004), Dangl, Wu, and Zechner (2008), 

Choi, Kahraman, and Mukherjee (2016), and Brown and Wu (2016), cannot do this. This result 

provides guidelines for future research on the dynamics of AFMI concentration and supports 

the spirit of Feldman and Xu (2022), which introduces this type of nonlinear framework in 

studying AFMI phenomena. 

The rest of this paper is organized as follows. Section 2 introduces our model. Section 

3 provides our empirical study. Section 4 concludes and discusses future research on this area. 

2 A Model of AFMI Concentration 

We introduce a rational equilibrium model to study the dynamics of AFMI 

concentration. In our model, investors can invest in multiple independent heterogeneous active 

funds, each with one manager, and in a passive benchmark portfolio.18 Within a continuous-

time framework, we study the active fund managers and investors over a time interval, at times 𝑡 , 𝑡 ∈ [0,𝑇] , where 𝑇 ,𝑇 > 0  is a constant, allowed to be sufficiently large (i.e., 𝑇 → ∞ ) 

when we study the steady state in some special cases. Our baseline model uses a linear 

framework as shown in Section 2.1 to study the dynamics of AFMI concentration. Then, we 

extend our framework to a nonlinear one as shown in Section 2.5 to study how the dynamics 
 

18 This multiple-fund setting is similar to the one in Brown and Wu (2016). 
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of stock market volatility affects that of AFMI concentration. Other settings of our model are 

similar to those in the current literature.19 

2.1 Observable Fund Returns and Unobservable Manager Abilities: Filtering 

There are 𝑛, 𝑛 ≥ 2, active funds in the market, which create returns for investors by 

investing their wealth in the stock market. Let 𝛏𝐭, 0 ≤ 𝑡 ≤ 𝑇 be an 𝑛 × 1 vector of active 

funds’ gross share prices, i.e., share price before fund costs and fees, where the 𝑖th element is 𝜉 , , 𝑖 = 1, … ,𝑛. Then, 𝐈 𝟏(𝛏𝐭)𝐝𝛏𝐭 is the 𝑛 × 1 vector of the instantaneous fund gross rates 

of return, where 𝐈(𝛏𝐭) is an 𝑛 × 𝑛 diagonal matrix with 𝜉 ,  as the 𝑖th diagonal element.20 

For simplification, we assume that active funds have beta loads of one on the passive 

benchmark portfolio. To focus on the active funds’ returns, similar to Feldman and Xu (2022), 

we normalize the passive benchmark portfolio’s return to zero so that the vector of 

instantaneous fund gross returns in excess of the passive benchmark is also 𝐈 𝟏(𝛏𝐭)𝐝𝛏𝐭 . 
Hereafter, we call 𝐈 𝟏(𝛏𝐭)𝐝𝛏𝐭 the funds’ instantaneous gross alphas, or briefly, gross alphas. 

Fund gross alphas depend on the 𝑛 × 1  vector of fund managers’ instantaneous 

abilities, 𝛉𝐭, 0 ≤ 𝑡 ≤ 𝑇, to beat the benchmark, where the 𝑖th element is 𝜃 , , 𝑖 = 1, … ,𝑛. 

We call them, briefly, abilities. These abilities are unobservable to both fund managers and 

investors. Fund managers and investors learn about 𝛉𝐭 by observing the history of fund gross 

alphas 𝐈 𝟏(𝛏𝐭)𝐝𝛏𝐭 , 0 ≤ 𝑠 ≤ 𝑡  (or equivalently by observing 𝛏𝐬 , 0 ≤ 𝑠 ≤ 𝑡 ). We assume a 

complete probability space (Ω,ℱ,ℙ)  with filtration ℱ  . The 𝑛 × 1  vectors of 

independent Wiener processes, 𝐖𝟏,𝐭  and 𝐖𝟐,𝐭 , 0 ≤ 𝑡 ≤ 𝑇 , are adapted to this filtration, 

where their 𝑖th elements are 𝑊 ,  and 𝑊 , , 𝑖 = 1, … ,𝑛, respectively.21 The unobservable 𝛉𝐭 and the observable 𝛏𝐭 evolve as follows: 

 𝐝𝛉𝐭 = (𝐚𝟎 + 𝐚𝟏𝛉𝐭)𝑑𝑡 + 𝐛𝟏𝐝𝐖𝟏,𝐭 + 𝐛𝟐𝐝𝐖𝟐,𝐭, (1) 

 𝐈 𝟏(𝛏𝐭)𝐝𝛏𝐭 = 𝐀𝛉𝐭𝑑𝑡 + 𝐁𝐝𝐖𝟐,𝐭, (2) 

with initial conditions 𝛉𝟎  and 𝛏𝟎 , respectively. The 𝑛 × 1  constant vector 𝐚𝟎  has its 𝑖 th 

 
19 Similar to Berk and Green (2004), Brown and Wu (2016), and Feldman and Xu (2022), managers and investors 
are symmetrically informed; the model is in partial equilibrium; managers’ actions do not affect the passive bench-
mark returns; and we do not model sources of managers’ abilities to outperform the passive benchmarks portfolios. 
20 The 𝑛 × 1 vector 𝐝𝛏𝐭 has its 𝑖th element as 𝑑𝜉 , , which is the differential of 𝜉 , , 𝑖 = 1, … ,𝑛. Hereafter, a 
vector with 𝐝 on the left has a similar definition. 
21 For any 𝑖 and 𝑗, 𝑑𝑊 , 𝑑𝑊 , = 0; and for any 𝑖 ≠ 𝑗, 𝑑𝑊 , 𝑑𝑊 , = 0 and 𝑑𝑊 , 𝑑𝑊 , = 0. 
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element 𝑎 ,  , 𝑖 = 1, … , 𝑛 , whereas the 𝑛 × 𝑛  constant diagonal matrices 𝐚𝟏 , 𝐛𝟏 , 𝐛𝟐 , 𝐀 , 

and 𝐁  have their 𝑖 th diagonal elements 𝑎 ,  , 𝑏 ,  , 𝑏 ,  , 𝐴  , and 𝐵  , 𝑖 = 1, … , 𝑛 , 

respectively. We assume that 𝐴 > 0, 𝑖 = 1, … ,𝑛 and, without loss of generality, we assume 𝐵 > 0, 𝑖 = 1, … ,𝑛. While abilities are unobservable to managers and investors, the evolution 

processes (“laws of motion”) and all parameter values are common knowledge. 

This setting implies the following. First, the abilities, 𝛉𝐭, follow dynamic processes. 

Second, the fund gross alphas, 𝐈 𝟏(𝛏𝐭)𝐝𝛏𝐭, depend on the managers’ abilities and on random 

shocks. As 𝐴 > 0 , 𝑖 = 1, … ,𝑛 , a manager with positive (negative) ability tends to create 

positive (negative) fund gross alpha, and the larger 𝐴  is, the higher is the sensitivity of gross 

alpha to ability. Also, 𝐵  , 𝑖 = 1, … ,𝑛  is the diffusion coefficient of fund 𝑖 ’s gross alpha, 

which positively corresponds to the variation of fund 𝑖’s gross alpha. 22 Third, as 𝐚𝟏, 𝐛𝟏, 𝐛𝟐, 𝐀, and 𝐁 are diagonal matrices, over time a manager’s ability and gross alpha are independent 

of those of other managers.23 ,24  Fourth, where 𝑏 , > 0 (𝑏 , < 0) , the shock 𝑊 ,   affects 

manager 𝑖’s ability and fund gross alpha, which, consequently, are instantaneously positively 

(negatively) correlated, as 𝑏 , 𝐵 > 0 (𝑏 , 𝐵 < 0) . Where 𝑏 , = 0 , and 𝑏 , > 0 , manager 𝑖 ’s ability and gross alpha are affected by independent shocks, thus are instantaneously 

uncorrelated. A larger 𝑏 ,  relative to 𝑏 ,  implies a higher instantaneous correlation between 

manager 𝑖’s gross alpha and ability. 

To facilitate our analysis, we define the following terms: 

• ℱ𝛏 ≜  the 𝜎 -algebras generated by 𝛏𝐬, 0 ≤ 𝑠 ≤ 𝑡  , with ℱ𝛏   as the 

corresponding filtration over 0 ≤ 𝑡 ≤ 𝑇; 

• 𝐦𝐭 ≜ the 𝑛 × 1 vector of mean of 𝛉𝐭 conditional on the observations 𝛏𝐬, 0 ≤ 𝑠 ≤
 

22 Notice that for fund 𝑖, 𝑖 = 1, … ,𝑛, the parameter 𝐵  determines the instantaneous variance of 𝑑𝜉 , /𝜉 ,  at 
time 𝑡, as Var 𝑑𝜉 , /𝜉 , |ℱ = 𝐵 𝑑𝑡, and determines the instantaneous quadratic variation of 𝑑𝜉 , /𝜉 ,  at time 𝑡, as 𝑑𝜉 , /𝜉 , = 𝐵 𝑑𝑡. Thus, we can regard 𝐵  as a parameter indicating fund 𝑖’s performance variation. 
23 For any 𝑖 ≠ 𝑗, 𝑑𝜃 , 𝑑𝜃 , = 0, 𝑑𝜃 , 𝑑𝜉 , /𝜉 , = 0, and 𝑑𝜉 , /𝜉 , 𝑑𝜉 , /𝜉 , = 0. 
24 Current literature shows that in some fund families, as funds are managed by the same team of managers, their 
abilities and alphas are correlated such that we can learn about the ability of a fund from another fund’s 
performance [e.g., Brown and Wu (2016) and Choi, Kahraman, and Mukherjee (2016)]. In this sense, we can think 
of a “fund” in our model as a fund family in the real world such that the ability and alpha of a fund family are 
independent of those of other fund families. Under a similar framework, we can analyze the AFMI concentration 
based on the market shares of fund families. The insights of this model of fund family concentration are similar 
to those of our model. To simplify our discussion, we call each institution as a “fund” in this paper. 
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𝑡, i.e., 𝐦𝐭 ≜ E 𝛉𝐭|ℱ𝛏 ; 

• 𝛄𝐭 ≜ the 𝑛 × 𝑛 covariance matrix of 𝛉𝐭 conditional on the observations 𝛏𝐬, 0 ≤ 𝑠 ≤𝑡, i.e., 𝛄𝐭 ≜ E (𝛉𝐭 − 𝐦𝐭)(𝛉𝐭 −𝐦𝐭)′|ℱ𝛏 . 

As 𝐦𝐭 is the expected abilities inferred from observable fund returns, hereafter, we briefly 

call 𝐦𝐭 as inferred abilities. We assume that the conditional distribution of 𝛉𝟎 given 𝛏𝟎 (the 

prior distribution) is Gaussian, 𝑁(𝐦𝟎,𝛄𝟎) , where 𝛄𝟎  is a 𝑛 × 𝑛  diagonal matrix, and 

elements of 𝛏𝟎, 𝐦𝟎, and 𝛄𝟎 have finite values. 

Managers and investors update their estimates of 𝛉𝐭 using their observations of 𝛏𝐭 in 

a Bayesian fashion.25 The techniques are called optimal filtering and are used in numerous 

previous studies. 26  In our case, let ℱ𝛏𝟎,𝐖 , 0 ≤ 𝑡 ≤ 𝑇  be the 𝜎 -algebras generated by 𝛏𝟎, 𝐖𝐬, 0 ≤ 𝑠 ≤ 𝑡 . Then, 

 𝐖𝐭 = 𝐁 𝟏[𝐈 𝟏(𝛏𝐭)𝐝𝛏𝐭 − 𝐀𝐦𝐬𝑑𝑠] (3) 

is an 𝑛 × 1 vector of independent Wiener process with respect to the filtration ℱ𝛏 , 

with the 𝑖th element as 𝑊 ,  and with its initial value 𝐖𝟎 being a zero 𝑛 × 1 vector. The 𝜎 -algebras ℱ𝛏  and ℱ𝛏𝟎,𝐖  are equivalent. 𝐖𝐭  innovates the inferred abilities 𝐦𝐭 . The 

variables 𝐦𝐭, 𝛏𝐭, and 𝛄𝐭 are the unique, continuous, ℱ𝛏-measurable solutions of the system 

of equations 

 𝐝𝐦𝐭 = (𝐚𝟎 + 𝐚𝟏𝐦𝐭)𝑑𝑡 + 𝛔𝐦(𝛄𝐭)𝐝𝐖𝐭, (4) 

 𝐈 𝟏(𝛏𝐭)𝐝𝛏𝐭 = 𝐀𝐦𝐭𝑑𝑡 + 𝐁𝐝𝐖𝐭, (5) 

 𝐝𝛄𝐭 = [𝐛𝟏𝐛𝟏 + 𝐛𝟐𝐛𝟐 + 2𝐚𝟏𝛄𝐭 − 𝛔𝐦(𝛄𝐭)𝝈𝒎(𝛄𝐭)]𝑑𝑡, (6) 

where 

 𝛔𝐦(𝛄𝐭) ≜ (𝐛𝟐𝐁 + 𝐀𝛄𝐭)′𝐁 𝟏, (7) 

with initial conditions 𝛏𝟎 , 𝐦𝟎 , and 𝛄𝟎 . The random process (𝛉𝐭, 𝛏𝐭) , 0 ≤ 𝑡 ≤ 𝑇  is 

 
25 This type of model is solved in Liptser and Shiryaev (2001a, Ch. 8; 2001b, Ch. 12). More general models with 
settings similar to those presented by Liptser and Shiryaev (2001a,b) allow model parameters to be functions of 
the stochastic gross alphas. 
26 See, for example, Dothan and Feldman (1986), Feldman (1989, 2007), Berk and Stanton (2007), Dangl, Wu, 
and Zechner (2008), Brown and Wu (2013, 2016), and Feldman and Xu (2022). 
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conditionally Gaussian given ℱ𝛏.27,28 

Taking a closer look at 𝐝𝛄𝐭 , we find that as 𝛄𝟎  and the parameter matrices in 

Equations (6) and (7) are diagonal, 𝛄𝐭 and 𝛔𝐦(𝛄𝐭) are diagonal. Then, we can define the 𝑖th 

diagonal element of 𝛄𝐭 as 𝛾 , , 𝑖 = 1, … ,𝑛, which is the variance of 𝜃 ,  conditional on the 

observations of fund share prices, representing the imprecision of the estimate 𝑚 , . We have 

 𝑑𝛾 , = 𝑏 , + 𝑏 , + 2𝑎 , 𝛾 , − 𝜎 , 𝛾 , 𝑑𝑡, (8) 

where 𝜎 , 𝛾 , , 𝑖 = 1, … ,𝑛, is the 𝑖th diagonal element of 𝛔𝐦(𝛄𝐭) that 

 𝜎 , 𝛾 , ≜ 𝑏 , 𝐵 + 𝐴 𝛾 , /𝐵 . (9) 

As 𝛄𝐭 and 𝛔𝐦(𝛄𝐭) are diagonal, by Equation (4), 𝑚 ,  is unaffected by 𝑊 ,  or 𝛾 ,  for any 𝑖 ≠ 𝑗. Thus, a manager’s inferred ability and its precision are independent of those of other 

managers, which simplifies our analyses in the following sections.29 

To make economic sense, we assume a nonnegative 𝑏 , , 𝑖 = 1, … , 𝑛, which induces a 

positive 𝜎 , 𝛾 ,   as shown in Equation (9) (because 𝐵   and 𝐴   are positive).30  In other 

words, under this setting, for each fund a positive (negative) shock in fund gross alpha induces 

an increase (a decrease) in the manager’s inferred ability. Also, depending on parameter values, 

 
27 The technical requirements to prove the theorems are regular conditions over the period 0 ≤ 𝑡 ≤ 𝑇, such as 
boundedness of parameter values, integrality of variables, and finite moments of variables. See the requirements 
of the corresponding theorems in Liptser and Shiryaev (2001a, 2001b). The intuition of these requirements is that, 
over a finite time period, almost surely manager abilities, fund gross alphas, and their variations should be finite 
so that the learning processes are well defined. These requirements are satisfied, due to our finite parameter values, 
finite initial values, and the finite horizon within which we study our model. In the real world, abilities that keep 
improving or deteriorating over a short period, or abilities that revert to a finite mean over a long period, would 
satisfy the technical requirements and follow our learning processes. 
28 Notice that the processes (𝛏𝐭,𝐖𝐭) or, equivalently, (𝛏𝐭,𝐦𝐭,𝛄𝐭) provide the same information as (𝛉𝐭, 𝛏𝐭) over 0 ≤ 𝑡 ≤ 𝑇, where 𝛉𝐭 is unobservable. Hence, investors’ original non-Markovian problem can be stated as an 
equivalent Markovian one, which allows a state vector solution. 
29 If the parameter matrices in Equations (6) and (7) and/or the initial values are not diagonal, then a manager’s 
inferred ability could depend on innovation shocks to other funds and the precision of the inferred ability could 
depend on the correlations of this manager’s ability and gross alpha with those of other managers. Consequently, 
a fund’s equilibrium size, shown in the next sections, could depend on other fund managers’ inferred abilities. 
This complicates our discussions and does not affect our main insights, so we do not introduce this complexity. 
30 This is because a negative 𝑏 ,  induces a negative instantaneous/idiosyncratic correlation, which can give rise 
to negative total correlation. If 𝛾 ,  weighs the positive systematic source of correlation, 𝐴 , insufficiently high, 
then the negative instantaneous/idiosyncratic source of correlation 𝑏 , 𝐵  dominates. Thus, under these special 
parameter values, which we do not allow here, the dynamics 𝛾 ,  may induce correlation between inferred ability 
and performance shocks, which changes sign over time, resulting in a transient nonmonotonic relation between 
performance shocks and inferred ability even under the linear structure that we analyze in this section. For detailed 
analysis of this nonmonotonicity, see Feldman (1989, Proposition 4). 
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the dynamics of 𝑑𝛾 ,  , induces a 𝛾 ,   that monotonically increases, decreases, or stays 

unchanged over time. Consequently, 𝜎 , 𝛾 , , monotonically increases, decreases, or stays 

unchanged, respectively, over time.31 

The above results imply that investors make their optimal decisions in two steps. First, 

they observe the history of the funds’ share prices, 𝛏𝐭, restructure the state space to consist of 

only observable processes while maintaining informational equivalence,32  and generate a 

posterior distribution of the fund manager abilities. In this way, they convert the problem from 

a non-Markovian one to an equivalent tractable Markovian one.33,34 Second, they use their 

posterior estimate, 𝐦𝐭, to predict the fund gross alphas in the forthcoming future, as shown by 

Equation (5). They use this prediction in solving their optimization problems. 

2.2 Investors’ Optimizations and Fund Managers’ Optimizations 

Using the above filter to re-represent the state space 𝛉𝐭, 𝛏𝐭  in terms of observable 

variables 𝛏𝐭,𝐦𝐭, 𝛄𝐭 , we solve investors’ and fund managers’ optimization problems. 

We assume that there are infinitely many small risk-neutral investors in the market and 

that each investor’s investment decision does not affect the funds’ returns and sizes, although 

all investors together do affect these variables. An investor’s portfolio return depends on three 

components:  fund gross alphas, management fees, and fund costs. Similar to Berk and Green 

(2004), Feldman, Saxena, and Xu (2020, 2021), Feldman and Xu (2022), and other related 

models, we assume the following. Each fund manager chooses the amount of the fund to 

actively manage at each time 𝑡  under fixed management fees 𝑓  , 𝑖 = 1, … , 𝑛 . There are 

decreasing returns to scale at the fund level. For fund 𝑖, 𝑖 = 1, … ,𝑛, at time 𝑡, fund costs 

variable 𝐶 𝑞 ,  is an increasing and convex function of the fund amount that is under active 

management 𝑞 , , such that 

 
31  In this linear structure, 𝛾 ,   has a steady state such that 𝑑𝛾 , = 0 . 𝛾 ,   converges to this steady state 
monotonically. Consequently, 𝜎 , 𝛾 ,  also has a steady state to which it converges monotonically. 
32 See Feldman (1992). 
33 Notice that in these optimization processes, the unobservable manager abilities 𝛉𝐭 is replaced by its observable 
conditional mean, 𝐦𝐭, updated by a new Wiener process 𝐖𝐭, and that 𝐦𝐭 is continuously updated as a function 
of the dynamic conditional covariance matrix 𝛄𝐭. Hence, investors’ problems become Markovian, which makes 
the problems tractable (allowing a state vector solution). 
34  The elliptical nature our conditionally Gaussian structure allows closure of the filter after two conditional 
moments. Otherwise, all the conditional higher moments would be part of the filter, and the choice of which higher 
moments to ignore would be a function of the desired precision. 
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 𝐶 𝑞 , = 𝑐 𝑞 , . (10) 

Of 𝑞 , , the total asset managed by fund 𝑖 (i.e., fund 𝑖’s size), the amount 𝑞 , − 𝑞 ,  (𝑞 , −𝑞 , ≥ 0) is invested in the passive benchmark, earning the passive benchmark portfolio return 

and inducing no fund costs. The amount 𝑞 ,  generates fund gross alphas. 

At time 𝑡, let the price of fund 𝑖’s asset under management net of fund costs and fees 

be 𝑆 ,  , 0 ≤ 𝑡 ≤ 𝑇 . Then, the active fund’s net return is 𝑑𝑆 , /𝑆 ,  . As we normalize the 

passive benchmark portfolio’s return to zero, the active fund’s net return in excess of the passive 

benchmark is 𝑑𝑆 , /𝑆 , − 0 = 𝑑𝑆 , /𝑆 , . Hereafter, we call 𝑑𝑆 , /𝑆 ,  fund 𝑖’s instantaneous 

net alpha, or briefly net alpha. Based on the above discussion, we have, 

 𝑑𝑆 ,𝑆 , = 𝑞 ,𝑞 , 𝑑𝜉 ,𝜉 , − 𝐶 𝑞 ,𝑞 , 𝑑𝑡 − 𝑓𝑑𝑡. (11) 

Similar to Berk and Green (2004) and Feldman and Xu (2022), we assume that risk-neutral 

investors supply capital with infinite elasticity to funds that have positive expected fund net 

alphas, driving the conditional expectation of fund net alphas to zero at each time 𝑡. Thus, we 

have the following condition in equilibrium: 

 E 𝑑𝑆 ,𝑆 , ℱ𝛏 = 0,  ∀𝑡, 𝑖 = 1, … , 𝑛. (12) 

Taking conditional expectation on Equation (11) and setting it to zero, we have 

 𝑞 ,𝑞 , 𝐴 𝑚 , − 𝑐 𝑞 ,𝑞 , − 𝑓 = 0. (13) 

Rearranging, 

 𝑓𝑞 , = 𝐴 𝑚 , 𝑞 , − 𝑐 𝑞 , . (14) 

As any fund costs are deducted from investment returns before the returns are transferred to 

investors [as shown by the fund net alpha Equation (11)], the term 𝑓𝑞 ,  is manager 𝑖’s profit. 

Manager 𝑖 wants to maximize profit 𝑓𝑞 ,  by choosing 𝑞 , . Then, manager 𝑖’s problem is 

 max, 𝑓𝑞 , = max, 𝐴 𝑚 , 𝑞 , − 𝑐 𝑞 ,  (15) 

subject to the constraint 

 0 ≤ 𝑞 , ≤ 𝑞 , ,  ∀ 𝑖 = 1, … ,𝑛. (16) 

As in Berk and Green (2004) and Feldman and Xu (2022), we define 𝑚 , , 𝑖 = 1, … ,𝑛, 
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such that if 𝑚 , < 𝑚 , , fund 𝑖 receives no investments from investors and exits the market. 

Hereafter, we briefly call 𝑚 , , 𝑖 = 1, … ,𝑛 the survival levels. Here we assume 𝑚 , ≥ 0.35 

The optimal amount under active management and the optimal total assets under management, 𝑞 , ∗ and 𝑞 ,∗ , are not trivial where 𝑚 , ≥ 𝑚 , ; otherwise, they are both zero. 

Solving investors’ and managers’ problems, we obtain the equilibrium optimal solutions 

for funds surviving in the market36 

 𝑞 , ∗ = 𝐴 𝑚 ,2𝑐 , (17) 

 𝑞 ,∗ = 𝐴 𝑚 ,4𝑐 𝑓 . (18) 

To simplify the notations, we define fund 𝑖’s size factor as 𝑋  such that 

 𝑋 ≜ 14𝑐 𝑓 . (19) 

The higher the decreasing returns to scale parameter 𝑐  and the higher the management fee 𝑓  

are, the lower is fund 𝑖’s size factor and, then, the lower is the equilibrium fund size 𝑞 ,∗ . Then, 

 𝑞 ,∗ = 𝑋 𝐴 𝑚 , . (20) 

Proof. See the Internet Appendix. □ 

2.3 Equilibrium Market Power and Market Structure 

We demonstrate that AFMI concentration is the key measure to study AFMI’s industrial 

organization, while other common measures are less informative in equilibrium. 

As investors receive net alphas from funds, any fund costs are transferred to investors 

as reductions in fund net alphas so that fund managers bear no costs in operation. Then, in 

equilibrium, for 𝑖 = 1, … ,𝑛, manager 𝑖’s profit is the revenue 𝑓𝑞 ,∗ , and the profit rate on 

each dollar under management is 𝑓 , a constant. A manager’s profit margin, i.e., the difference 

 
35 The reason is that given updated information, for fund 𝑖, the expected instantaneous gross alpha accumulated 
in 𝑑𝑡  is E 𝑑𝜉 , /𝜉 , |ℱ𝛏 = 𝐴 𝑚 , 𝑑𝑡 , with 𝐴 > 0 . If 𝑚 , < 0 , the expected instantaneous gross alpha is 
negative. With positive fund costs and fees, the expected instantaneous net alpha earned by investors in 𝑑𝑡 would 
be substantially smaller than zero, so they would switch their investments to the passive benchmark portfolio. 
Thus, we do not allow 𝑚 , < 0 for a surviving fund. 
36 Similar to Berk and Green (2004) and Feldman and Xu (2022), we assume that managers choose 𝑓  such that 
the constraint 0 ≤ 𝑞 , ∗ ≤ 𝑞 ,∗ , is satisfied for 𝑖 = 1, … ,𝑛, so this constraint does not affect the optimization. See 
the proof of the solutions of the optimization problems in the Internet Appendix. 
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between revenue and costs, divided by the revenue, is always one 𝑓𝑞 ,∗ − 0 𝑓𝑞 ,∗ = 1 . 

Also, if we calculate a manager’s profit markup, i.e., revenue divided by costs, we find that the 

profit markup = 𝑓𝑞 ,∗ 0⁄   is positive infinity. This does not imply that the manager has 

infinite profitability. Notice again that it is the investors who determine the quantity of 

production (fund sizes), and investors choose the quantity to capture any positive expected net 

alpha. As a manager’s profit rate is fixed at its constant management fee, he or she needs to 

attract investments as much as possible by maximizing the expected fund net alpha; as the 

manager’s ability to create the fund net alpha is limited, the equilibrium profit is limited. 

A fund’s market power can be measured by its Lerner Index, which is the difference 

between fee and marginal cost, divided by fee. From the above discussion, we can see that a 

fund’s Lerner Index is always one [= (𝑓 − 0) 𝑓⁄ ]. 
The above results show that in this framework and those with similar settings 

commonly used by the literature, there are no dynamics in the common measures of a 

manager’s profitability and market power. Simply calculating these measures does not offer 

much insight to the dynamics of AFMI. In contrast, the market structure of AFMI is dynamic, 

as funds’ relative sizes change over time. Thus, to understand the dynamics of AFMI industrial 

organization, we need to focus on the dynamics of its market structure, in particular, the 

dynamics of AFMI concentration. 

2.4 Equilibrium AFMI Concentration 

We use the Herfindahl-Hirschman Index (HHI) to measure AFMI concentration for the 

reasons discussed in our Introduction section. Let 𝐪𝐭∗ be the 𝑛 × 1 vector of the equilibrium 

fund sizes with the 𝑖th element as 𝑞 ,∗ . Based on Equation (20), we have, 

 𝐪𝐭∗ = 𝐀𝟐𝐈𝟐(𝐦𝐭)𝐗,  (21) 

where 𝐈(𝐦𝐭) is a 𝑛 × 𝑛 diagonal matrix with the 𝑖th element as the 𝑖th element of 𝐦𝐭, and 𝐗 is a 𝑛 × 1 vector with the 𝑖th element as 𝑋 . Then, the 𝑛 × 1 vector of the equilibrium 

fund market shares, 𝐰𝐭∗, is 

 𝐰𝐭∗ = 𝐪𝐭∗𝐪𝐭∗′𝟏, (22) 

where 𝟏 is an 𝑛 × 1 vector of ones. By definition, the equilibrium AFMI HHI (henceforth 
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we briefly call it HHI) is 

 𝐻𝐻𝐼∗ ≜ 𝐰𝐭∗′𝐰𝐭∗ = 𝐪𝐭∗′𝐪𝐭∗(𝐪𝐭∗′𝟏) . (23) 

Substituting Equations (21) into Equation (23), we have the following result. 

Proposition RN1. HHI and Relative Inferred Abilities 

In equilibrium, HHI relates to managers’ inferred abilities as follows 

 𝐻𝐻𝐼∗ = 𝐗′𝐀𝟒𝐈𝟒(𝐦𝐭)𝐗[𝐗′𝐀𝟐𝐈𝟐(𝐦𝐭)𝟏] = ∑ 𝑋 𝐴 𝑚 ,∑ 𝑋 𝐴 𝑚 ,  (24) 

and we can denote 𝐻𝐻𝐼∗ ≜ 𝐻𝐻𝐼∗(𝐦𝐭). □ 

Proposition RN1 shows that funds’ size factors, sensitivities of gross alphas to abilities, 

and managers’ relative inferred abilities together determine HHI. If managers are homogeneous 

such that these factors are the same for all managers, then funds’ sizes are the same and 𝐻𝐻𝐼∗ 
is constant at its minimum value 1/𝑛 . If managers are heterogeneous such that these 

parameters are different for different managers, then 𝐻𝐻𝐼∗ can take any value between 1/𝑛 

and its maximum value 1, where AFMI is monopolistic. To offer more insights to the market 

equilibrium, we focus on the case of heterogeneous managers in this paper. As 𝐦𝐭 is the only 

variable in Equation (24), 𝐻𝐻𝐼∗ can be regarded as a function driven by 𝐦𝐭. 
Notice that Feldman, Saxena, and Xu (2020) (hereafter, FSX), in a one-period model, 

also derive the endogenous HHI, which is a function of the constant decreasing returns to scale 

parameters in the fixed-point equilibrium.37 Our continuous-time model not only derives this 

result because the constant decreasing returns to scale parameters are captured by the fund size 

factors in our model, but also suggests that investors’ expectations of managers’ (relative) 

abilities are relevant in determining fund sizes, thus HHI. As these expectations are dynamic 

over time, HHI is also dynamic over time; factors affecting the dynamics of these expectations 

also affect that of HHI. Thus, our model offers new and important insights into HHI over the 

FSX model. The following proposition shows how the changes of investors’ inferences of 

manager abilities influence the dynamics of HHI. 

 
37 See the Equation (33) in Section 2.4 of FSX. 
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Proposition RN2. Dynamics of HHI and Changes in Relative Inferred Abilities 

HHI evolves as follows 

 𝑑𝐻𝐻𝐼∗ = 𝜕𝐻𝐻𝐼∗𝜕𝐦𝐭′ 𝐝𝐦𝐭 + 12𝐝𝐦𝐭 𝜕 𝐻𝐻𝐼∗𝜕𝐦𝐭′𝜕𝐦𝐭 𝐝𝐦𝐭 = 𝜕𝐻𝐻𝐼∗𝜕𝐦𝐭′ 𝛔𝐦(𝛄𝐭)𝐝𝐖𝐭 + 𝜕𝐻𝐻𝐼∗𝜕𝐦𝐭′ (𝐚𝟎 + 𝐚𝟏𝐦𝐭)𝑑𝑡
+ 12 𝐭𝐫𝐚𝐜𝐞 𝝈𝒎(𝛄𝐭) 𝜕 𝐻𝐻𝐼∗𝜕𝐦𝐭′𝜕𝐦𝐭 𝛔𝐦(𝛄𝐭) 𝑑𝑡. (25) 

To facilitate our discussion, we rewrite 𝑑𝐻𝐻𝐼∗ in scalar form: 

 𝑑𝐻𝐻𝐼∗ = 𝜕𝐻𝐻𝐼∗𝜕𝑚 , 𝑑𝑚 , + 12 𝜕 𝐻𝐻𝐼∗𝜕𝑚 , 𝑑𝑚 ,  

= 𝜕𝐻𝐻𝐼∗𝜕𝑚 , 𝜎 , 𝛾 , 𝑑𝑊 , + 𝜕𝐻𝐻𝐼∗𝜕𝑚 , 𝑎 , + 𝑎 , 𝑚 , 𝑑𝑡
+ 12 𝜕 𝐻𝐻𝐼∗𝜕𝑚 , 𝜎 , 𝑑𝑡 , 

(26) 

where 

 𝜕𝐻𝐻𝐼∗𝜕𝑚 , = 4𝑋 𝐴 𝑚 , × 𝑞 ,∗ ∑ 𝑞 ,∗ − ∑ 𝑞 ,∗∑ 𝑞 ,∗ , (27) 

and 

 𝜕 𝐻𝐻𝐼∗𝜕𝑚 , = 4𝑋 𝐴 × 

⎣⎢⎢
⎢⎡3𝑞 ,∗ ∑ 𝑞 ,∗ + 6𝑞 ,∗ ∑ 𝑞 ,∗∑ 𝑞 ,∗ − 8𝑞 ,∗ − ∑ 𝑞 ,∗∑ 𝑞 ,∗ ⎦⎥⎥

⎥⎤. (28) 

Proof. Apply Itô’s Lemma on 𝐻𝐻𝐼∗(𝐦𝐭)  and substitute Equation (4) into the expression, 

using the property of independence of 𝑊 , , 𝑖 = 1, … , 𝑛. □ 

Proposition RN2 shows how HHI changes with inferred abilities over time. We 

summarize the key insights directly from Proposition RN2 in the following two corollaries, 

followed by explanations and intuitions. 
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Corollary RN2.1. Size of Inferred Ability and Impact on Dynamics of HHI 

If 𝑚 , > 𝑚 , , then we have the following. 

a. If 𝑚 ,  is sufficiently large (small) such that 𝑞 ,∗ > ∑ ,∗∑ ,∗  (𝑞 ,∗ < ∑ ,∗∑ ,∗ ), then an 

increase in 𝑚 ,  has a positive (negative) impact on 𝑑𝐻𝐻𝐼∗. 
b. If 𝑚 ,   is sufficiently large or sufficiently small such that 3𝑞 ,∗ ∑ 𝑞 ,∗ +

,∗ ∑ ,∗∑ ,∗ − 8𝑞 ,∗ − ∑ 𝑞 ,∗ < 0 , then 𝐻𝐻𝐼∗  is concave in 𝑚 ,  . Over the next 

infinitesimal period 𝑑𝑡, this concavity has a negative impact on 𝑑𝐻𝐻𝐼∗. If all 𝑚 ,  

for 𝑖 = 1, … ,𝑛  are sufficiently close to each other, making 𝑞 ,∗   for 𝑖 = 1, … ,𝑛 

sufficiently close such that 3𝑞 ,∗ ∑ 𝑞 ,∗ + ,∗ ∑ ,∗∑ ,∗ − 8𝑞 ,∗ − ∑ 𝑞 ,∗ > 0, then 

the 𝐻𝐻𝐼∗ is convex in 𝑚 , . Then, over 𝑑𝑡, this convexity has a positive impact on 𝑑𝐻𝐻𝐼∗. □ 

To understand Corollary RN2.1a, we observe from Equation (27) that if fund 𝑖 ’s 

inferred ability 𝑚 ,   is sufficiently large (small) relative to those of other funds, such that 𝑞 ,∗ > ∑ ,∗∑ ,∗  (𝑞 ,∗ < ∑ ,∗∑ ,∗ ), then 
∗,  is positive (negative). Then, as shown in Equation 

(26), an increase in manager 𝑖’s inferred ability, due to a sufficiently large drift term in inferred 

ability, 𝑎 , + 𝑎 , 𝑚 , , or a sufficiently large innovation shock in performance, 𝑑𝑊 , , has a 

positive (negative) impact on the change in HHI, 𝑑𝐻𝐻𝐼∗. 
The intuition is that, if manager 𝑖’s inferred ability is sufficiently large relative to other 

managers’ inferred abilities, then fund 𝑖’s size is sufficiently large relative to other funds’ sizes, 

and fund 𝑖 dominates in the market. A higher inferred ability attracts more investment to fund 𝑖 , making it larger and making AFMI more concentrated at fund 𝑖 . On the other hand, if 

manager 𝑖’s inferred ability is sufficiently small relative to other managers’ inferred abilities, 

then fund 𝑖’s size is sufficiently small relative to other funds’ sizes. A higher inferred ability 

attracts more investment to fund 𝑖, making its size closer to those of other funds and then 

making AFMI less concentrated. 

To understand Corollary RN2.1b, consider the second-order partial derivative shown in 
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Equation (28). If manager 𝑖’s inferred ability 𝑚 ,  is sufficiently large (small) relative to those 

of other managers, such that 𝑞 ,∗  is sufficiently large (small) relative to 𝑞 ,∗ ’s for 𝑗 ≠ 𝑖, then 

∗, < 0 and 𝐻𝐻𝐼∗ is concave in 𝑚 , .38 Then, over the next infinitesimal period 𝑑𝑡, this 

concavity has a negative impact on 𝑑𝐻𝐻𝐼∗. If all managers’ inferred abilities are sufficiently 

close to each other’s such that funds’ sizes are sufficiently close, making 𝐻𝐻𝐼∗ close to its 

minimum value 1/𝑛, then 
∗, > 0 and 𝐻𝐻𝐼∗ is convex in 𝑚 , .39 Then, over the next 

infinitesimal period 𝑑𝑡, this convexity has a positive impact on 𝑑𝐻𝐻𝐼∗. 
The intuition is that if fund 𝑖’s market share is sufficiently large (small) due to manager 𝑖’s sufficiently large (small) inferred ability, then AFMI is concentrated at fund 𝑖 (at other 

funds). Although a higher (lower) inferred ability of manager 𝑖  can make AFMI more 

concentrated at fund 𝑖 (at other funds), it becomes more and more difficult to increase the 

concentration in this way. On the other hand, if all managers’ inferred abilities are close, such 

that funds’ sizes are close, then a larger and a smaller inferred ability of manager 𝑖 both can 

make fund 𝑖’s size deviate from other funds’ sizes, making AFMI more concentrated. It is 

easier to make fund 𝑖’s size deviate from other funds’ sizes and to increase HHI if the absolute 

change in manager 𝑖’s inferred ability is larger in this case. 

For illustration, we simulate HHI over different levels of inferred abilities in the Internet 

Appendix. 

Corollary RN2.2. Interaction Effect of Performance Shock and Performance Variation 

If 𝑚 , > 𝑚 , , then we have the following result. If 𝑚 ,  is sufficiently large (small) such that 𝑞 ,∗ > ∑ ,∗∑ ,∗   (𝑞 ,∗ < ∑ ,∗∑ ,∗  ), then a positive 𝑑𝑊 ,   exerts a positive (negative) impact on 

 
38 If 𝑞 ,∗  is sufficiently small relative to 𝑞 ,∗ ’s for 𝑗 ≠ 𝑖, then the term −∑ 𝑞 ,∗  dominates in the expression 3𝑞 ,∗ ∑ 𝑞 ,∗ + ,∗ ∑ ,∗∑ ,∗ − 8𝑞 ,∗ − ∑ 𝑞 ,∗  , making this expression negative. If 𝑞 ,∗   is sufficiently large 

relative to 𝑞 ,∗  ’s for 𝑗 ≠ 𝑖 , then 3𝑞 ,∗ ∑ 𝑞 ,∗ + ,∗ ∑ ,∗∑ ,∗ < 9𝑞 ,∗   and −8𝑞 ,∗ − ∑ 𝑞 ,∗ < −9𝑞 ,∗  , 

making 3𝑞 ,∗ ∑ 𝑞 ,∗ + ,∗ ∑ ,∗∑ ,∗ − 8𝑞 ,∗ − ∑ 𝑞 ,∗ < 9𝑞 ,∗ − 9𝑞 ,∗ = 0. 

39  If all funds’ sizes are sufficiently close, then the expression is 3𝑞 ,∗ ∑ 𝑞 ,∗ + ,∗ ∑ ,∗∑ ,∗ − 8𝑞 ,∗ −∑ 𝑞 ,∗ ≈ (2𝑛 − 2)𝑞 ,∗ > 0 as 𝑛 ≥ 2. 
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𝑑𝐻𝐻𝐼∗, and a higher 𝐵  mitigates this positive (negative) impact. □ 

Corollary RN2.2 shows that the interaction effect of 𝑑𝑊 ,   and 𝐵   on 𝑑𝐻𝐻𝐼∗  is 

negative (positive) if 𝑚 ,   is sufficiently large (small) relative to 𝑚 ,  ’s for 𝑗 ≠ 𝑖 . This is 

because 𝜎 , 𝛾 , > 0, and a higher 𝐵  decreases 𝜎 , 𝛾 , , as shown in Equation (9). Also, 

a higher 𝐵  does not affect 
∗, , as implied by Equation (27). Thus, a higher 𝐵  decreases 

the absolute value of 
∗, 𝜎 , 𝛾 , , which is the coefficient of 𝑑𝑊 ,  in the expression of 𝑑𝐻𝐻𝐼∗, as shown in Equation (26). If 𝑚 ,  is sufficiently large (small) relative to 𝑚 , ’s for 𝑗 ≠ 𝑖, then 

∗,  and thus 
∗, 𝜎 , 𝛾 ,  are positive (negative). Then, a smaller absolute 

value of 
∗, 𝜎 , 𝛾 ,  induced by a higher 𝐵  makes 

∗, 𝜎 , 𝛾 ,  smaller (larger). 

The intuition of the above result is as follows. A positive shock in manager 𝑖 ’s 

performance induces higher manager 𝑖 ’s inferred ability thus higher fund 𝑖 ’s size. If this 

manager’s inferred ability is sufficiently large (small) relative to those of other managers, a 

higher manager 𝑖 ’s inferred ability increases (decreases) HHI, as mentioned in the earlier 

discussion. In this case, this positive performance shock increases (decreases) HHI. Moreover, 

if manager 𝑖 ’s performance variation is higher, then investors allocate smaller weights on 

manager 𝑖 ’s performance shocks when learning about her ability. Consequently, a positive 

shock in manager 𝑖’s performance induces smaller impact on her inferred ability, and thus 

induces a positive (negative) impact with a smaller absolute value on HHI. 

2.5 Equilibrium AFMI Concentration and Stock Market Volatility: Extension to a 

Nonlinear Framework 

We analyze how stock market volatility affects manager abilities and then AFMI 

concentration by extending our linear framework shown in Equations (1) and (2) to a nonlinear 

one. Higher stock market volatility increases market stress and redemption risk. The 

consequential higher redemption from investors and the need of larger cash buffers to manage 

the higher redemption risk impede managers when implementing investment strategies to 

produce abnormal returns, making fund gross alphas less related to manager abilities and more 
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related to luck.40 Thus, we assume that sensitivities of gross alphas to manager abilities is a 

decreasing function of stock market volatility. Let 𝜆  be a variable that captures the impact of 

stock market volatility on the sensitivities of gross alphas to manager abilities, i.e., 𝐴 ≜𝐴 (𝜆 ) and ( ) < 0, 𝑖 = 1, … ,𝑛, following 

 𝑑𝜆 = 𝜇 𝑑𝑡 + 𝜎 𝑑𝑧 . (29) 

While, in general, 𝜇   and 𝜎   could be functions of 𝜆   and other market variables,41  for 

brevity and simplicity, we assume here that 𝜇   and 𝜎   are constant, and that 𝑧   is a 

Brownian motion adapted to ℱ   and independent of 𝐖𝟏,𝐭  and 𝐖𝟐,𝐭 . Using the 

analysis in Section 2.4, we derive the dynamics of HHI in the following proposition.42 

Proposition RNV. Dynamics of HHI and Changes in Relative Inferred Abilities 

HHI evolves as follows (in scalar form): 

 𝑑𝐻𝐻𝐼∗ = 𝑑𝑋 + 𝜕𝐻𝐻𝐼∗𝜕𝐴 (𝜆 )𝜕𝐴 (𝜆 )𝜕𝜆 𝑑𝜆  

+ 12 𝜕 𝐻𝐻𝐼∗𝜕𝐴 (𝜆 ) 𝜕𝐴 (𝜆 )𝜕𝜆 + 𝜕𝐻𝐻𝐼∗𝜕𝐴 (𝜆 )𝜕 𝐴 (𝜆 )𝜕𝜆 𝜎 𝑑𝑡, (30) 

where 𝑑𝑋  equals the 𝑑𝐻𝐻𝐼∗ in Equation (26) with 𝐴  replaced by 𝐴 (𝜆 ), 

 𝜕𝐻𝐻𝐼∗𝜕𝐴 (𝜆 ) = 4𝑋 𝑚 , 𝐴 (𝜆 ) × 𝑞 ,∗ ∑ 𝑞 ,∗ − ∑ 𝑞 ,∗∑ 𝑞 ,∗ , (31) 

and 

 𝜕 𝐻𝐻𝐼∗𝜕𝐴 (𝜆 ) = 4𝑋 𝑚 , × 

⎣⎢⎢
⎢⎡3𝑞 ,∗ ∑ 𝑞 ,∗ + 6𝑞 ,∗ ∑ 𝑞 ,∗∑ 𝑞 ,∗ − 8𝑞 ,∗ − ∑ 𝑞 ,∗∑ 𝑞 ,∗ ⎦⎥⎥

⎥⎤. (32) 

Proof. Apply Itô’s Lemma on 𝐻𝐻𝐼∗(𝐦𝐭, 𝜆 ) , using the property that 𝜆   is independent of 

 
40 See, for example, the discussion of how market stress affects fund performance in Jin, Kacperczyk, Kahraman, 
and Suntheim (2022). 
41 For example, 𝜆  could follow an autoregressive process. 
42  Learning about manager abilities is unaffected by 𝜆   because 𝜆   is unaffected by unobservable manager 
abilities, 𝛉𝐭, and 𝑧  is independent of 𝐖𝟏,𝐭 and 𝐖𝟐,𝐭. Consequently, 𝜆  is independent of 𝑚 , , 𝑖 = 1, … ,𝑛. 
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𝑚 , , 𝑖 = 1, … ,𝑛. □ 

Proposition RNV shows how the dynamics of stock market volatility affects that of 

HHI. A higher stock market volatility, 𝜆 , decreases sensitivities of gross alphas to manager 

abilities, 𝐴 (𝜆 ) , as ( ) < 0 , 𝑖 = 1, …𝑛 . Given the same inferred manager abilities, it 

decreases fund expected gross alphas; this consequently decreases all funds’ equilibrium sizes. 

If fund 𝑖’s inferred ability 𝑚 ,  is sufficiently large (small) relative to those of other funds, 

such that 𝑞 ,∗ > ∑ ,∗∑ ,∗  (𝑞 ,∗ < ∑ ,∗∑ ,∗ ), then the decrease in fund 𝑖’s size exerts a negative 

(positive) impact on HHI, as shown in the earlier discussions. In this case, we have 
∗( ) > 0 

(
∗( ) < 0 ) and, consequently, 

∗( ) ( ) < 0  (
∗( ) ( ) > 0 ). Then, whether HHI 

increases (decreases) with 𝜆   depends on whether the aggregate effect of 𝜆  , ∑ ∗( ) ( ) , is positive (negative). From Equation (31), we can see that if fund 𝑖  is 

extremely large relative to other funds, due to its large 𝑋 , 𝐴 (𝜆 ), and/or 𝑚 , , then 
∗( ) 

is positive with a large absolute value, which would drive the value of ∑ ∗( ) ( ) 
when the magnitude of ( ) is similar to those of other funds.43 As ( ) < 0, we would 

have a negative ∑ ∗( ) ( ) when some extremely large funds exist in AFMI. In other 

words, when the distribution of funds’ sizes is highly skewed to the right (which is the case in 

reality44), the effect of the decrease in extremely large funds’ sizes due to an increase in stock 

market volatility dominates those of small funds, inducing a lower HHI. 

A nonlinear frame allowing coefficients of processes of manager abilities and gross 

alphas to be functions of other observable economic factors can also model how the dynamics 

of these factors affect that of HHI. Linear frameworks of manager abilities and gross alphas 

that are used in the current literature45  cannot directly incorporate the effects of economic 

 
43  As the change in stock market volatility affects active equity funds in a similar way, it is likely that the 
magnitudes of ( ), 𝑖 = 1, … ,𝑛 are close to each other. 
44 In our empirical analysis in Section 3, we also show that the distribution of funds’ sizes is highly skewed to the 
right in our sample. 
45 See, for example, Berk and Green (2004) and their followers. 
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factors on manager abilities and gross alphas and, consequently, cannot easily model these 

effects on the dynamics of HHI as we do here. We study only the effect of the stock market 

volatility on HHI in this section; the effects of other economic factors are left for future research. 

2.6 Constant Manager Abilities and HHI 

We illustrate a special case of HHI in which manager abilities are constant under the 

linear framework shown in Section 2.1. In this case, 𝐚𝟎 is an 𝑛 × 1 zero vector and 𝐚𝟏, 𝐛𝟏, 

and 𝐛𝟐 are 𝑛 × 𝑛 zero matrices, making 𝐝𝛉𝐭 a zero vector. We have 

 𝐝𝐦𝐭 = 𝛔𝐦(𝛄𝐭)𝐝𝐖𝐭, (33) 

 𝛔𝐦(𝛄𝐭) ≜ (𝐀𝛄𝐭)′𝐁 𝟏, (34) 

 𝛄𝐭 = [𝐈 + 𝛄𝟎𝐀𝐁 𝟐𝐀𝑡] 𝛄𝟎, (35) 

where 𝐈 is an 𝑛 × 𝑛 identity matrix. Theorem 12.8 of Liptser and Shiryaev (2001b) provides 

the proof of the above results. These results show that for fund 𝑖, 𝑖 = 1, … ,𝑛, we have that 

the imprecision of the estimate 𝑚 ,  , 𝛾 , = , ,   decreases to zero over time 

monotonically, so the sensitivity of inferred ability to performance shocks, 𝜎 , 𝛾 , ≜𝐴 𝛾 , /𝐵 , also decreases to zero monotonically. Thus, we have the following proposition. 

Proposition CA. Constant Manager Abilities and Steady State of HHI 

If 𝛉𝐭  is a constant vector and 𝑚 , > 𝑚 ,   for 𝑖 = 1, … ,𝑛 , then over time, 𝛾 ,   and 𝜎 , 𝛾 ,   decrease monotonically to zero. As 𝑡 → ∞ , for 𝑖 = 1, … ,𝑛 , 𝑑𝑚 , =𝜎 , 𝛾 , 𝑑𝑊 , → 0 and 𝑚 , , becomes constant, making 𝐻𝐻𝐼∗ a constant. □ 

Proposition CA shows the steady state of this constant-ability framework. The intuition 

is that as managers’ abilities are unobservable constants, estimation precisions improve 

monotonically over time, inducing inferred abilities to be increasingly less sensitive to funds’ 

gross alpha realizations. As time goes to infinity, people learn managers’ abilities, thus do not 

change their estimates. Then, investors stop changing their investments flows to funds (i.e., 

fund sizes stay unchanged), making HHI stay unchanged. As empirical HHI does not converge 

to a constant in the long term, as shown in Feldman, Saxena, and Xu (2020, 2021) and our 
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following empirical section, theoretical models with this framework46 lack the explanatory and 

predictive power of HHI dynamics. For illustration, we simulate HHI in the cases of constant 

ability and of dynamic ability in the Internet Appendix. 

2.7 Mean-Variance Risk-Averse Investors and HHI 

To study the effect of investors’ risk aversion on HHI, we use our linear framework 

shown in Section 2.1 and assume that investors are mean-variance risk averse, who maximize 

their portfolios’ instantaneous Sharpe ratios. These investors’ optimal portfolios are growth 

optimal and are the same as those of investors with Bernoulli logarithmic preferences, who 

maximize expected utility.47 This setting is also similar to the one in Pastor and Stambaugh 

(2012), Feldman, Saxena, and Xu (2020, 2021), and Feldman and Xu (2022). 

As risk-averse investors trade off risk and return, we need to redefine our model. First, 

we cannot normalize the passive benchmark portfolio return to be zero, as the level of this 

return is relevant.48 Here, we define the share price of the passive benchmark portfolio at time 𝑡, as 𝜂 . We assume that the passive benchmark portfolio return 𝑑𝜂 /𝜂  follows. 

 𝑑𝜂𝜂 = 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊 , , (36) 

where 𝜇  and 𝜎  are positive known constants and 𝑊 ,  is a Wiener Process. 

Second, for 𝑖 = 1, … ,𝑛 , we still define 𝑑𝜉 , /𝜉 ,  , as the fund gross alphas, which 

follow the process defined in Equations (1) and (2), and define 𝑑𝑆 , /𝑆 ,  as the fund net alphas. 

As the active funds have beta loading of one on the passive benchmark portfolio, the fund gross 

return is 𝑑𝜉 , /𝜉 , + 𝑑𝜂 /𝜂  and the fund net return is 𝑑𝑆 , /𝑆 , + 𝑑𝜂 /𝜂 . We assume that 

the risk source of the benchmark return, 𝑊 , , is independent of that of gross alphas, so 

 𝑑𝑊 , 𝑑𝑊 , = 0,  ∀𝑡, 𝑖 = 1, … ,𝑛. (37) 

Third, to simplify our discussion, we normalize the risk-free rate to zero.49 All other 

settings are the same as before. 

An investor invests in 𝑛  active funds and the passive benchmark to maximize the 

 
46 See, for example, Berk and Green (2004), Choi, Kahraman, and Mukherjee (2016), and Brown and Wu (2016). 
47 See the discussions of mean-variance risk-averse investors in Feldman and Xu (2022). 
48 As mean-variance risk-averse investors’ preferences are defined over their whole portfolios, they do not form 
their decision based on a marginal analysis of the active funds’ risk alone. [See, for example, Equation (46), which 
collapses if the passive benchmark return is normalized to zero.] 
49 Alternatively, we can regard 𝑑𝜂 /𝜂  as the passive benchmark portfolio return in excess of the risk-free rate. 
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portfolio’s instantaneous Sharpe ratio: 

 max E 𝑑𝑝𝑝 ℱ𝛏
Var 𝑑𝑝𝑝 ℱ𝛏  (38) 

subject to 

 𝐯𝐭′𝟏 = 1, (39) 

 0 ≤ 𝑣 , ≤ 1,  ∀ 𝑖 = 1, … , 𝑛 + 1, (40) 

where 𝐯𝐭 is the (𝑛 + 1) × 1 portfolio weight vector, with the 𝑖th element 𝑣 ,  as the weight 

allocated to the 𝑖th fund 𝑖 = 1, … ,𝑛, and the last element 𝑣 ,  as the weight allocated to 

the passive benchmark portfolio. Condition (40) is to prevent short selling of active funds or 

the passive benchmark portfolio. Also, 𝑝   is the portfolio’s value, and 𝑑𝑝 /𝑝   is the 

investor’s instantaneous portfolio return. We define 𝐑𝐭 as the (𝑛 + 1) × 1 net return vector 

of these 𝑛 + 1 assets, with the 𝑖th element 𝑖 = 1, … ,𝑛. 
 𝑅 , = 𝑑𝑆 ,𝑆 , + 𝑑𝜂𝜂  

= 𝑞 ,𝑞 , 𝐴 𝑚 , − 𝑐 𝑞 ,𝑞 , − 𝑓 + 𝜇 𝑑𝑡 + 𝑞 ,𝑞 , 𝐵 𝑑𝑊 , + 𝜎 𝑑𝑊 ,  
(41) 

and 

 𝑅 , = 𝑑𝜂𝜂 = 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊 , . (42) 

Then, the investor’s portfolio net return is 

 𝑑𝑝𝑝 = 𝐯𝐭′𝐑𝐭. (43) 

Solving the investor’s problem, we have the optimal weight allocations 𝐯𝐭∗ . As 

investors face the same risk-return tradeoff and have the same objective function, they all make 

the same optimal decision of 𝐯𝐭∗. We define the part of the total wealth of all investors allocated 

to financial assets (i.e., allocated to the active fund and the passive benchmark portfolio) as 𝑉, 𝑉 ∈ (0, +∞), 0 ≤ 𝑡 ≤ 𝑇. To simplify our analyses and focus on how managers’ heterogeneity 

affects the dynamics of HHI, we assume that 𝑉 is constant and exogenous to both investors 

and managers.50 Then, the amount of wealth allocated to fund 𝑖, i.e., fund 𝑖’s size, is 𝑞 ,∗ =
 

50 In reality, this wealth not only depends on the returns from financial assets, but also depends on production 
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𝑣 ,∗ 𝑉, 𝑖 = 1, … , 𝑛. 

As in the risk-neutral case, we can write the fund manager’s profit as a function of 𝑞 , , 

i.e., 𝑔 𝑞 ,  , where 𝑔   is a (smooth, increasing, concave) function, shown in the Internet 

Appendix. Then, manager 𝑖’s problem is 

 max, 𝑓𝑞 , = max, 𝑔 𝑞 ,  (44) 

subject to 

 0 ≤ 𝑞 , ≤ 𝑞 , ,  ∀ 𝑖 = 1, … ,𝑛. (45) 

By solving the investors’ and managers’ problems,51 we obtain the equilibrium fund size: 

 𝑞 ,∗ = 𝐴 𝑚 , 𝑉𝜎4𝑓 𝐵 𝜇 + 𝑐 𝑉𝜎 . (46) 

We define the size factor of fund 𝑖 when investors are mean-variance risk-averse as 

 𝑋 ≜ 𝑉𝜎4𝑓 𝐵 𝜇 + 𝑐 𝑉𝜎 = 14𝑓 𝑐 + 4𝑓𝐵 𝜇𝑉𝜎 . (47) 

Similar to the results of 𝑋 , a larger decreasing returns to scale parameter, 𝑐 , and a higher 

management fee, 𝑓 , both decrease the size factor 𝑋 . Additionally, higher 𝐵  and 𝜇  both 

decrease 𝑋 , and higher 𝑉 and 𝜎  both increase 𝑋 . The intuition is that, holding other 

parameters unchanged, mean-variance risk-averse investors invest more (less) in fund 𝑖 if the 

risk of the passive benchmark’s return 𝜎  (the risk of fund 𝑖’s gross alpha 𝐵 ) is higher. Also, 

investors invest more in fund 𝑖 if they have more wealth 𝑉 to invest, and switch from fund 𝑖 to the passive benchmark if the benchmark’s mean return 𝜇  is higher. Further, we can see 

that, holding other parameters unchanged, 𝑋  is smaller than 𝑋 . In other words, compared 

to AFMI with risk-neutral investors, AFMI with mean-variance risk-averse investors has 

smaller equilibrium fund sizes. This is because investors’ risk considerations reduce their 

 
activities, research and development expenditures, consumptions, taxes, and many other aspects of the economy 
that we do not model here. Also, it can change over time and its dynamics can affect the dynamics of HHI. To 
simplify our model, we do not introduce these complexities of this wealth value. 
51 We assume that managers choose 𝑓  such that the constraint 0 ≤ 𝑞 , ∗ ≤ 𝑞 ,∗ , is satisfied for 𝑖 = 1, … ,𝑛, so 
this constraint does not affect the managers’ optimization processes. Also, we assume that 𝜇  is sufficiently large 
or 𝜎  is sufficiently small so that 0 ≤ 𝑣 ,∗ ≤ 1, is satisfied for 𝑖 = 1, … ,𝑛 + 1, so this constraint does not affect 
the investors’ optimization processes. See the proof in the Internet Appendix. 
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investment to risky active funds. Using this new definition of fund 𝑖’s size factor, we have 

 𝑞 ,∗ = 𝐴 𝑚 , 𝑋 . (48) 

Proof. See the Internet Appendix. □ 

We substitute 𝑞 ,∗  shown above into the formula of 𝐻𝐻𝐼∗ and derive the following 

results, 

 𝐻𝐻𝐼∗ = 𝐗𝐑𝐀′𝐀𝟒𝐈𝟒(𝐦𝐭)𝐗𝐑𝐀[𝐗𝐑𝐀′𝐀𝟐𝐈𝟐(𝐦𝐭)𝟏]𝟐 = ∑ 𝑋 𝐴 𝑚 ,∑ 𝑋 𝐴 𝑚 ,  , (49) 

where 𝐗𝐑𝐀 is an 𝑛 × 1 vector with the 𝑖th element as 𝑋 . 

We can see that the form of 𝐻𝐻𝐼∗ in (49) is the same as the one in (24) in the case of 

risk-neutral investors. The only difference is that here we use 𝐗𝐑𝐀 instead of 𝐗 as the size 

factors. Thus, the relation of the dynamics of 𝐻𝐻𝐼∗  and managers’ inferred abilities in 

Proposition RN1 still holds; consequently, the results of Proposition RN2 and Corollaries 

RN2.1 and RN2.2 hold. Also, if we allow 𝐴   to be a decreasing function of stock market 

volatility, 𝜆 , as we do in Section 2.5, then the results of Proposition RNV still holds. The 

intuition is that investors’ risk considerations decrease the equilibrium fund sizes, but 𝐻𝐻𝐼∗ 
depends on relative fund sizes, and the way to compare these sizes does not depend on investors’ 

risk considerations. Thus, the dynamics of 𝐻𝐻𝐼∗ relates to managers’ relative inferred abilities 

in a way similar to that of the risk-neutral case. 

The following proposition summarizes the results in this section. 

Proposition RA. HHI and Mean-Variance Risk-Averse Investors 

When investors are mean-variance risk averse, 𝑞 ,∗ , 𝑖 = 1, … , 𝑛, are smaller than those when 

investors are risk neutral, and funds’ size factors 𝑋 , 𝑖 = 1, … ,𝑛, not only decrease with 𝑐  

and 𝑓  , but also increase with 𝑉  and 𝜎   and decrease with 𝐵   and 𝜇  . Besides the size 

factors, the other results of Propositions RN1 and RN2, Corollaries RN2.1 and RN2.2, and 

Proposition RNV still hold. □ 

2.8 Fund Entrances and Exits and HHI 

Besides the dynamics of fund managers’ relative abilities, a fund’s entrance and exit 
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could affect the dynamics of AFMI concentration. Although we do not analyze funds’ entrances 

and exits explicitly, we show that our framework is compatible with the effects of them, if we 

allow the total number of funds to change over time, i.e., 𝑛 = 𝑛 , and require funds to exit the 

market if their managers’ inferred abilities reduce to zero, i.e., the survival ability level 𝑚 , =0, 𝑖 = 1, … ,𝑛 . 

Notice that in equilibrium, funds with positive (zero) inferred abilities earn positive 

(zero) profits, as implied by the equilibrium fund sizes in Equation (18) in the risk-neutral case 

and those in Equation (46) in the mean-variance risk-averse case. When 𝑚 , = 0 , 𝑖 =1, … ,𝑛 , managers with positive inferred abilities optimally stay in the market to earn positive 

profits. On the other hand, as managers cannot short sell investors’ wealth,52 managers with 

negative inferred abilities optimally choose to put zero assets under active management to 

avoid losses, thus exit the market. Therefore, the setting of 𝑚 , = 0 , 𝑖 = 1, … ,𝑛   is 

consistent with profit-maximizing managers, and these survival ability levels can be regarded 

as those endogenously chosen by fund managers. 

To see how our framework is compatible with the effects of funds’ entrances and exits, 

notice again that equilibrium fund sizes, 𝑞 ,∗ , are functions of managers’ inferred abilities, 𝑚 , . 

As the value of 𝑚 ,  changes continuously, the value of 𝑞 ,∗  also changes continuously. When 𝑚 ,  decreases to zero, 𝑞 ,∗  and fund 𝑖’s market share decreases to zero, such that when the 

fund exits the market, the exit does not cause a jump in 𝐻𝐻𝐼∗. On the other hand, a potential 

entrant can be regarded as a fund with negative inferred ability. When its inferred ability 𝑚 ,  

increases to zero, it enters the market with an equilibrium fund size 𝑞 ,∗  equal to zero. After 

that, if 𝑚 ,  increases, then 𝑞 ,∗  increases. As the changes in 𝑚 ,  and 𝑞 ,∗  are continuous, 

the entrance does not cause a jump in 𝐻𝐻𝐼∗. Then, in these two cases, 𝑑𝐻𝐻𝐼∗ can still be 

expressed by Equation (25), and the results from Section 2.3 to Section 2.7 are still valid. In 

other words, funds’ entrances and exits do not affect 𝑑𝐻𝐻𝐼∗ immediately, but they change the 

set of funds in AFMI and affect 𝑑𝐻𝐻𝐼∗ after that. 

However, if 𝑚 , > 0  for any 𝑖 = 1, … ,𝑛  , then fund 𝑖 ’s exit or entrance creates a 

jump in 𝐻𝐻𝐼∗ , and we need to incorporate this jump effect when analyzing 𝑑𝐻𝐻𝐼∗ . The 

 
52 Managers can short sell some stocks when constructing a portfolio to pursue alphas, but they cannot short the 
whole portfolio or short the “active management amount”, as shown by the constraint 𝑞 , ≥ 0 for any 𝑖. 
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reason is that when fund 𝑖 exits the market with 𝑚 ,  decreasing to 𝑚 , , its equilibrium fund 

size 𝑞 ,∗  jumps from a value larger than (but not close to) zero to zero value, creating a jump 

in 𝐻𝐻𝐼∗. On the other hand, when fund 𝑖 enters the market with 𝑚 ,  increasing to 𝑚 , , its 

equilibrium fund size 𝑞 ,∗  jumps from zero to a value larger than (but not close to) zero, also 

creating a jump in 𝐻𝐻𝐼∗. In these two cases, 𝑑𝐻𝐻𝐼∗ cannot be expressed by Equation (25) 

because the jump effects should be added. 

In reality, we observe that investors keep withdrawing investments from badly 

performing funds, so when a fund with a history of bad performance eventually exits AFMI, 

its size is negligible compared to AFMI size. Also, when a new fund enters market, it starts 

with a size that is trivial compared to AFMI’s size, and if it performs well later, it grows. When 

these exits and entrances happen in the real world, we do not observe jumps in AFMI 

concentration levels. Therefore, our model can sufficiently explain the dynamics of AFMI 

concentration when funds exit and enter. 

3 Empirical Study 

Based on Corollaries RN2.1 and RN2.2, we have the following two predictions, 

respectively. For funds that are sufficiently large (small) relative to others, 

a. increase in these funds’ performances relative to those of other funds exerts positive 

(negative) impacts on HHI; 

b. higher performance variations in these funds mitigate these positive (negative) impacts 

on HHI such that the interaction effects of shocks in relative performance and 

performance variations are negative (positive) in these funds. 

Also, based on Proposition RNV, we have the following prediction. 

c. When the distribution of funds’ sizes is highly skewed to the right, an increase in stock 

market volatility decreases HHI. 

We test the above predictions empirically. 

3.1 Methodology 

We first develop the measures of fund performance and performance variation. We 

estimate fund performance using empirical asset pricing models in the current literature, such 

as the five-factor model developed by Fama and French (2015) (hereafter, FF5) and the four-
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factor model developed by Fama and French (1993) and Carhart (1997) (hereafter, FFC4). For 

each fund 𝑖, we estimate the following: 

 𝑟 , = 𝛽 , 𝐹 , + 𝜀 , , (50) 

where 𝑟 ,  is fund 𝑖’s net return in excess of risk-free return, 𝐹 ,  is the return of factor 𝑗, 𝛽 ,  

is the factor loading of fund 𝑖 to factor 𝑗, 𝑀 is the number of factors, and 𝜀 ,  is the residual. 

This model is estimated on a rolling-window basis. 

Our first measure of fund performance variation is the 1 − 𝑅  of the regression model 

calculated as ∑ ,∑ , ̅  , where 𝜀̂ ,   is the estimated residual and �̅�   is the average excess 

return of fund 𝑖 over the rolling window period. Notice that 𝜀̂ , = 𝑟 , − ∑ 𝛽 , 𝐹 , , where 𝛽 ,  is the estimate of factor loading to factor 𝑗 and 𝜀̂ ,  can be regarded as the in-sample 

estimate of abnormal net return, or net alpha. Consequently, 1 − 𝑅  can be regarded as the in-

sample estimate of fund performance variation (normalized by total variation of the excess 

return). Amihud and Goyenko (2013) also find that the measure 1 − 𝑅  in such regression 

models is highly related to fund performance. Similar to Amihud and Goyenko (2013), we use 

a 24-month rolling window to estimate the models for each fund 𝑖, and we denote the 1 − 𝑅  

estimated by the previous 24-month period (from 𝑡 − 1 to 𝑡 − 24) as 𝑂𝑀𝑅2 , . 

We estimate the (out-of-sample) fund net alpha at time 𝑡 as the 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎 , = 𝑟 , −∑ 𝛽 , 𝐹 , , where 𝛽 ,  is estimated using the observations in the previous 24 months. Our 

second measure of fund performance variation is the standard deviation of the net alphas in the 

previous 12 months, denoted as 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑 , . For robustness, we also calculate the fund 

gross alpha as the fund net alpha plus the fund annual expense ratio divided by 12, and then 

calculate the standard deviation of this gross alpha in the previous 12 months as a measure of 

fund performance variation, denoted as 𝐺𝑟𝑜𝑠𝑠𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑 , . These two measures of fund 

performance variation are the same as the performance volatility measures used by Huang, Wei, 

and Yan (2021). 

We next choose the option-implied volatility index (VIX) as our measure of stock 

market volatility. VIX not only measures stock market volatility but also captures investors’ 
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expectation of such volatility, so current literature commonly uses VIX to measure market 

stress and panic.53 Thus, we expect that at a higher VIX level, the stock market is more volatile 

and stressful, impeding fund managers to implement their investment strategies and 

consequently reducing the sensitivities of gross alphas to manager abilities. 

Fund-Level Analysis:  Effectiveness of Our Measures of Stock Market Volatility and 

Performance Variation  

Feldman and Xu (2022) show that the equilibrium fund flow–net alpha sensitivity 

decreases with performance variation and increases with the sensitivity of gross alpha to 

manager ability.54 If our measure of stock market volatility is effective, then an increase of this 

measure should decrease the flow–net alpha sensitivity because it decreases the sensitivity of 

gross alpha to manager ability; if our measures of performance variation are effective, then 

higher values of these measures should decrease the flow–net alpha sensitivity. We test the 

effectiveness of our measures using the following model: 

 𝐹𝑙𝑜𝑤 , = 𝛿 + 𝛿 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎 , + 𝛿 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎 , × 𝑉𝐼𝑋+ 𝛿 𝑉𝐼𝑋 + 𝛿 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎 , × 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟 ,+ 𝛿 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟 , + 𝛿𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 , + 𝜙 + 𝜐+ 𝜀 , , 
(51) 

where 𝐹𝑙𝑜𝑤 ,  is the fund percentage flow calculated as the difference between the monthly 

growth rate of the fund’s total net asset under management (TNA) and the fund’s monthly net 

return, 𝑉𝐼𝑋  is the VIX value, and 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟 ,  is a measure of fund performance variation, 

which is 𝑂𝑀𝑅2 ,  , 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑 ,  , or 𝐺𝑟𝑜𝑠𝑠𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑 ,  . We follow the literature55  to 

choose control variables in the vector 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 , , which include the lagged values of the 

natural logarithm of the fund size (ln𝑆𝑖𝑧𝑒 , ); the natural logarithm of fund age (𝑙𝑛𝐴𝑔𝑒 , ); 

fund expense ratio (𝐸𝑥𝑝𝑒𝑛𝑠𝑒 , ); fund turnover ratio (𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 , ); the weighted average 

 
53 See, for example, Jin, Kacperczyk, Kahraman, and Suntheim (2022). 
54 In our model, we can also easily show that the equilibrium fund flow–net alpha is ,∗,∗ = ( ) , , ,, +( ) , , ,, + 2 ,, + 𝑎 , 𝑑𝑡, 𝑖 = 1, … ,𝑛, by applying Itô’s Lemma on 𝑞 ,∗  to calculate 𝑑𝑞 ,∗  and 

then divide it by 𝑞 ,∗ . Then, the flow–net alpha sensitivity decreases with 𝐵  and increases with 𝐴 (𝜆 ). 
55 See, for example, Brown and Wu (2016), Franzoni and Schmalz (2017), Harvey and Liu (2019), Jiang, Starks, 
and Sun (2021), Huang, Wei, and Yan (2021), and Feldman and Xu (2022). 
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flow of the fund class based on the Lipper fund classification; i.e., the style flow, 

(𝑆𝑡𝑦𝑙𝑒𝐹𝑙𝑜𝑤 ,  ); fund flow (𝐹𝑙𝑜𝑤 ,  ); fund family net alpha (𝐹𝑎𝑚𝐴𝑙𝑝ℎ𝑎 ,  ); and the 

natural logarithm of fund family size (ln𝐹𝑎𝑚𝑆𝑖𝑧𝑒 , ). Variables 𝜙  and 𝜐  represent year 

effects and fund effects, respectively. Detailed definitions and constructions of these variables 

are shown in the Data Appendix. When analyzing the flow–net alpha relations, we also include 

the interaction terms of ln𝑆𝑖𝑧𝑒 ,  and 𝑙𝑛𝐴𝑔𝑒 ,  with 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎 ,  because the current 

literature shows that the flow–net alpha sensitivity is affected by fund size [Brown and Wu 

(2016)] and fund age [Feldman and Xu (2022)]. To account for potential time-series and cross-

sectional correlations in residuals, we cluster the standard error by year and by fund. 

If our measure of stock market volatility is effective, we should find that 𝛿   is 

significantly negative; if our three measures of fund performance variation are effective, we 

should find that 𝛿  is significantly negative. 

Market-Level Analysis:  Dynamics of HHI and Changes in Stock Market Volatility, 

Fund Performances, and Performance Variations 

We test our three theoretical predictions using our measures of stock market volatility 

and fund performance variation. We measure the changes in funds’ performances relative to 

these changes in other funds by the changes in these funds’ market shares. The reason is that a 

fund’s equilibrium size is a positive function of the fund manager’s inferred ability shown in 

our theoretical model, and then market share, which is a fund’s size relative to the sum of all 

fund sizes, indicates a fund manager’s inferred ability relative to other managers. Consequently, 

change in a fund’s market share indicates change in relative inferred ability due to the change 

in the fund’s performance relative to that of other funds. 

Then, we test the following model. 

 𝑑𝑖𝑓_𝐻𝐻𝐼 = 𝛿 + 𝛿 𝑑𝑖𝑓_𝑉𝐼𝑋 + 𝛿 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒+ 𝛿 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒+ 𝛿 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒 × 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟+ 𝛿 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒 × 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟+ 𝛿 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟 + 𝛿 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟+ 𝛿 𝑁𝑢𝑚𝐺𝑟𝑜𝑤𝑡ℎ + 𝜙 + 𝜀 , 
(52) 
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where 𝑑𝑖𝑓_𝐻𝐻𝐼  is the change in HHI from time 𝑡 − 1 to 𝑡 and 𝑑𝑖𝑓_𝑉𝐼𝑋  is the change 

in VIX from time 𝑡 − 2 to 𝑡 − 1. The superscripts 𝐵 and 𝑆 denote the big-fund group and 

small-fund group, respectively. We define the big-fund group as the largest five funds (based 

on fund TNA values) and the small-fund group as the funds with fund TNA values from the 

fifth percentile to the tenth percentile because these funds are likely to be sufficiently large and 

sufficiently small, respectively, relative to other funds.56 We redefine the big-fund group and 

small-fund group in each month. The explanatory variable 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒  

(𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒 ) is the change in market share of the big-fund group (small-fund group) 

from time 𝑡 − 2 to 𝑡 − 1. Also, 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟  (𝑃𝑒𝑟𝑓_𝑉𝑎𝑟 ) is the weighted average of the 

measure of performance variation within the big-fund group (small-fund group) at time 𝑡 − 1, 

using funds’ TNAs at this time as weights. We also include 𝑁𝑢𝑚𝐺𝑟𝑜𝑤𝑡ℎ   as a control 

variable, which is the change in the number of funds in the market from time 𝑡 − 2 to 𝑡 − 1, 

divided by the number of funds at 𝑡 − 2. To account for potential serial correlation in residuals, 

we use Newey-West estimates of standard error with the maximum lag of 12 to be considered 

in the autocorrelation structure. 

In the above model, without including explanatory variables 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟  , 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟  , 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒 × 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟  , and 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒 ×𝑃𝑒𝑟𝑓_𝑉𝑎𝑟  , we expect 𝛿   to be negative when the distribution of funds’ sizes is highly 

skewed to the right because, in this case, higher stock market volatility should induce negative 

impact on HHI; we expect 𝛿  (𝛿 ) to be positive (negative) because shocks in the relative 

performance of the big-fund group (small-fund group), measured by the changes in the market 

share, should induce a positive (negative) impact on HHI. When including these four 

explanatory variables in this model, we expect 𝛿   (𝛿  ) to be negative (positive) because 

performance variation of the big-fund group (small-fund group) should mitigate the positive 

(negative) impact of shocks in the relative performance of this group on HHI. 

 
56 Because the performances and sizes of funds with fund size values from the lowest five percentiles are very 
volatile and contain much noise, we choose the funds with fund size values from the fifth percentile to the tenth 
percentile to construct the small-fund group. We do robustness checks with different classifications of the big-
fund group and small-fund group, as shown in the following discussion of the empirical study. 
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3.2 Data 

We collect our active fund data from the survivor-bias-free mutual fund database of the 

Center for Research in Security Prices (CRSP). Our sample period is January 1990 to 

December 2020, and we use monthly data.57 We exclude index funds, variable annuity funds, 

and exchange-traded funds (ETFs), and then choose U.S. domestic equity-only mutual funds 

by using the Lipper fund classification.58  This equity fund filter is similar to many of the 

current empirical studies such as those of Amihud and Goyenko (2013), Brown and Wu (2016), 

Choi, Kahraman, and Mukherjee (2016), Huang, Wei, and Yan (2021), and Feldman and Xu 

(2022). 

We use the MFLINKS database to aggregate fund share class-level information to fund-

level information. In particular, we calculate a fund’s TNA by summing up its share classes’ 

TNA and calculate fund size as fund TNA normalized to the December 2020 dollar value59. We 

calculate a fund-level variable’s value as the weighted average of share class-level values using 

share classes’ TNAs as weights. Fund family is identified by the management company code,60 

and we use funds’ TNAs as weights in calculating fund family performance. 

To estimate the FFC4 model, we collect the risk-free rate and the corresponding factors 

from the Fama-French database in Wharton Research Data Services (WRDS). To estimate the 

FF5 model, we collect the factors from the Fama-French website. 61  We collect daily 

observations of VIX from WRDS and calculate the average value of VIX in each month to 

develop the monthly VIX values. 

 
57 Information on the Lipper fund classification and most of the information on the management company code 
to identify fund families begins in December of 1999. As we use a 24-month rolling window to estimate fund net 
alpha, and we need 12 months to estimate alpha standard deviation, our test period starts from January 1993. 
58 We use funds in the following Lipper classes: Large-Cap Core, Large-Cap Growth, Large-Cap Value, Mid-Cap 
Core, Mid-Cap Growth, Mid-Cap Value, Small-Cap Core, Small-Cap Growth, Small-Cap Value, Multi-Cap Core, 
Multi-Cap Growth, and Multi-Cap Value. If a fund has a missing Lipper class in some months, we use its Lipper 
class in the previous months; if there is no information on a Lipper class in the previous months, we use its Lipper 
class in the later months. 
59 We divide a fund’s TNA by the total market capitalization of the U.S. equity market in that month, and then 
multiply it by the total market capitalization of the U.S. equity market in December 2020. The U.S. equity market 
information is offered by the CRSP US stock database, and we calculate the total market capitalization using only 
ordinary common shares, with the share type code in CRSP equal to 10 and 11. 
60 If a fund has a missing management company code in some months, we use the fund’s management company 
code in the previous months; if there is no information of management company code in the previous months, we 
use the fund’s management company code in the later months. 
61 The website address is https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html, accessed on 
July 19, 2022. 
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When conducting our market-level analysis on the dynamics of HHI, we include the 

observations of fund net alpha and 1 − 𝑅  of the empirical asset pricing model in our sample 

only if observations of fund net returns are available and fund TNA is positive in all of the 

previous 24 months (i.e., the estimation window). We include the observations of fund net alpha 

(gross alpha) standard deviation only if observations of fund net alphas (gross alphas) are 

available in all the previous 12 months. We also exclude fund observations if the fund’s size 

(in the December 2020 dollar value) is below 15 million. In doing the fund-level analysis on 

the effects of stock market volatility and performance variation on the flow–net alpha 

sensitivity, we further require a fund to have at least 24 months’ observations of all the variables 

in Equation (51).62 We also winsorize all the fund-level variables at the 1% and 99% levels 

when doing this analysis.63 The above criteria and process are similar to those in the fund 

management literature, such as Amihud and Goyenko (2013). 

We have 3,158 funds in our sample for our market-level analysis and have 2,437 funds 

for the fund-level analysis. The Data Appendix details the constructions of all the variables. 

3.3 Empirical Results 

Table 1 reports the summary statistics of the variables for our fund-level analysis on the 

flow–net alpha sensitivity. It shows that distributions of fund flow and style flow are slightly 

skewed to the right, whereas that of fund size is highly skewed to the right with a large standard 

deviation, implying that some extremely large funds exist in the market. Also, on average, fund 

net returns are slightly positive, whereas fund net alphas are slightly negative whether 

estimated by FF5 or FFC4. On average, the values of 1 − 𝑅  of FF5 and FFC4 are close to 0.08, implying that on average, around 8% of the total variation of fund net returns in excess 

of risk-free return is due to active management and cannot be explained by these models. The 

standard deviation of net alpha and that of gross alpha are very close to each other, as the fund 

expense ratio is very stable.64 The VIX value is close to symmetric with a large variation. 

Table 2 illustrates the results of the regression model in Equation (51). It shows that in 

all model specifications, the interaction term of fund net alpha and VIX is significantly negative, 

 
62 We also require a fund family to have at least two funds so that the fund family-level variables are meaningful. 
63 We winsorize the variables except 𝑉𝐼𝑋 , which is a market-level variable. 
64 The differences in the values of these two variables’ statistics exist in the sixth or seventh digit after the decimal. 
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suggesting that a higher VIX level significantly decreases the flow–net alpha sensitivity. In all 

these model specifications, a one-unit increase in VIX decreases the flow–net alpha sensitivity 

by around 0.002, holding other variables unchanged. Also, all the interaction terms of fund 

net alpha and performance variation measure are negative and highly significant, suggesting 

that higher performance variation significantly reduces the flow–net alpha sensitivity. 

Particularly, the first three columns report the results for which fund performance and 

performance variation are estimated by the FF5 model. We find that, holding other variables 

unchanged, if 𝑂𝑀𝑅2 ,   increases by 0.01 , the flow–net alpha sensitivity decreases by 0.0016  on average [model specification (1)]; if 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑 ,   or 𝐺𝑟𝑜𝑠𝑠𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑 ,  increases by 0.01, the flow–net alpha sensitivity decreases by 0.0004 

on average [model specifications (2) and (3)].65 The last three columns report the results for 

which fund performance and performance variation are estimated by the FFC4 model, and the 

results are highly consistently with those reported in the first three columns. 

The above results imply that higher stock market volatility decreases the sensitivity of 

gross alpha to manager ability, so we observe that it decreases the flow–net alpha sensitivity. 

The finding that a higher VIX level decreases the flow–net alpha sensitivity is consistent with 

that in Jin, Kacperczyk, Kahraman, and Suntheim (2022). 66  Also, higher performance 

variation makes investors rely less on fund performance to infer manager abilities and react 

less intensively to fund performance. This finding is consistent with that in Huang, Wei, and 

Yan (2021). In short, in these tests, we find that our measures of stock market volatility and 

performance variation are effective, so they should also affect the dynamics of HHI, as stated 

in our empirical prediction. 

Table 3 reports the summary statistics of the variables for our market-level analysis on 

the dynamics of HHI. It shows that on average, HHI is around 0.01 in the U.S. active equity 

mutual fund market, showing that this market is competitive. The big-fund group, which 

 
65 The results of model specifications (2) and (3), and model specifications (5) and (6) are very close because the 
standard deviation of net alpha and that of gross alpha are very close to each other. The difference exists in the 
sixth digit after the decimal in the coefficients and standard errors. 
66 Similarly, other studies also suggest that the flow–net alpha sensitivity decreases when the market is in extreme 
condition, more volatile, and accompanies with more economic uncertainty [Franzoni and Schmalz (2017), 
Harvey and Liu (2019), and Jiang, Starks, and Sun (2021)]. 
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contains only five funds, on average occupies 17% of the market share, whereas the small-

fund group, which contains around seventy funds on average over time, occupies only 0.07% 

of the market share on average. Also, the small-fund group tends to have a larger performance 

variation than the big-fund group, as implied by its larger mean values of 1 − 𝑅 , standard 

deviation of net alpha, and standard deviation of gross alpha. The change in VIX is small on 

average but variates a lot, implying that stock market volatility changes substantially over time. 

To offer more insights before we report the test results, we plot HHI, the number of 

funds in the market, and market shares of the big-fund and small-fund groups in Figure 1. 

First, we can see that HHI fluctuates a great deal over the last few decades and does not 

converge to a particular level. This finding is consistent with the framework with dynamic 

manager abilities but inconsistent with a linear framework with constant manager abilities, 

where HHI converges to a constant level. Therefore, the finding here is consistent with those 

of Feldman and Xu (2022).67 Second, HHI moves more closely with the market share of the 

big-fund group than with the inverse of the number of funds. As the market share value 

indicates the relative inferred ability of this group, this finding is consistent with our theoretical 

framework that the managers’ relative inferred abilities are more relevant than the number of 

funds when analyzing HHI. Therefore, it is important to study heterogeneous managers for 

whom HHI captures managers’ relative inferred abilities, instead of homogeneous managers 

because for them, HHI is simply the inverse of the number of funds. 

Further, our theory can explain some of the results in this figure in a way that is 

compatible with the stylized facts shown in the literature. For example, Wahal and Wand (2011) 

show that from the late 1990s to 2005, incumbents in the mutual fund market that have a high 

overlap in their portfolio holdings with those of new entrants experience lower fund flows and 

lower alphas. Kosowski, Timmermann, Wermers, and White (2006) show that outperforming 

managers become scarce after 1990 and speculates that this might be due to the competition 

among the large number of new funds, which reduces the gains from trading. Fama and French 

(2010) also report a decline in the persistence of alphas after 1992 and speculates that the cause 

 
67 Feldman and Xu (2022) shows that fund flows sensitivities to fund performance are nonmonotonic over time, 
which is consistent with a nonlinear filtering framework of dynamic unobservable managing abilities and 
inconsistent with a framework of constant unobservable managing abilities. 
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is either diseconomies of scale or the entry of hordes of mediocre funds that make it difficult 

to uncover truly informed managers. In Figure 1, we observe that the number of funds keeps 

increasing from the early 1990s to the early 2000s, whereas HHI keeps decreasing in this period. 

If the new entrants in this period hold portfolios similar to those of the incumbents and/or 

outperformance become scarce in this period, then fund managers’ inferred abilities become 

more similar. By our theoretical results, similarity in fund managers’ inferred abilities leads to 

similarity in equilibrium fund sizes, so HHI decreases. 

Table 4 reports the results of our market-level analysis on the dynamics of HHI, results 

of the regression model in Equation (52). It shows that the coefficient of 𝑑𝑖𝑓_𝑉𝐼𝑋   is 

significantly negative in all model specifications. In particular, results in column (1) (other 

columns) indicate that holding other variables unchanged, a one-unit increase in VIX decreases 

HHI in the next month by around 0.0002 (0.0001). This finding is consistent with our third 

prediction that when the distribution of funds’ sizes is highly skewed to the right (as shown in 

Table 1), an increase in stock market volatility decreases HHI. 

Also, in column (1) the coefficient of 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒  is significantly positive, 

implying that a positive shock in the big-fund group’s market share induces an increase in HHI 

in the next month. In particular, holding other variables unchanged, if the big-fund group’s 

market share increases by 0.01, then HHI in the next month would increase by around 0.012. 

Also, the coefficient of 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒   is negative but is insignificant. The 

insignificance is probably due to the noise in the small funds’ market shares. As change in 

market share indicates change in relative performance in AFMI in general, the results in column 

(1) are consistent with our first prediction that, for sufficiently large (small) funds, increase in 

their performances relative to those of other funds exerts positive (negative) impacts on HHI. 

Columns (2) to (4) offer the results when fund performance and performance variation 

measures are estimated by the FF5 model. The coefficients of the interaction terms of 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒  and the measures of the big-fund group’s performance variation are 

significantly negative. In particular, holding other variables unchanged, if 𝑂𝑀𝑅2 ,  

increases by one basis point, then the impact of 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒   on 𝑑𝑖𝑓_𝐻𝐻𝐼  

decreases by around 0.0014; if 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑 ,  or 𝐺𝑟𝑜𝑠𝑠𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑 ,  increases by 
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one basis point, then the impact of 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒  on 𝑑𝑖𝑓_𝐻𝐻𝐼  decreases by around 0.015 . Also, the coefficients of the interaction terms of 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒   and the 

measures of the small-fund’s performance variation are positive and marginally significant. 

The results in columns (5) to (7) when measures of fund performance and performance 

variation are estimated by the FFC4 model are consistent with those in columns (2) to (4). We 

also find that the coefficients of the interaction term of 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒   and 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑 ,  , and that of 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒   and 𝐺𝑟𝑜𝑠𝑠𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑 ,   become 

more significant in these model specifications. In general, these results are consistent with our 

second prediction that higher performance variations in sufficiently large (small) funds mitigate 

the positive (negative) impacts of the increase in their relative performance on HHI. 

We also do multiple robustness checks on our test results. We estimate the shocks in 

VIX as the out-of-sample residuals of an AR(1) model or an AR(2) model on VIX on a 24-

month rolling-widow basis, and use these shocks to measure the (unexpected) changes in VIX 

instead of 𝑑𝑖𝑓_𝑉𝐼𝑋 . We redefine the big-fund group as the largest ten funds. We also redefine 

the small-fund group as the funds with fund TNA values from the tenth percentile to the 

fifteenth percentile, or as those with fund TNA values from the fifth percentile to the fifteenth 

percentile. Furthermore, we use standard error clustered by year instead of Newey-West 

estimates of standard error. We redo the tests and find results that are highly consistent with 

those in Table 4. For brevity, we omit the results of these robustness checks here. 

In summary, the above empirical results are consistent with our theoretical predictions. 

4 Conclusion 

We introduce continuous-time rational models of dynamics of AFMI HHI in which 

unobservable fund manager abilities are heterogeneous and dynamic. In equilibrium, managers 

with higher inferred abilities receive larger fund sizes, so their relative inferred abilities 

determine HHI. Our model predicts that if a manager’s inferred ability is sufficiently larger 

(smaller) than those of others, then an increase in this manager’s inferred ability exerts positive 

(negative) impact on HHI. Also, if a manager has sufficiently large (small) inferred ability 

relative to those of others, then HHI is concave in this manager’s inferred ability, and the 

concavity has negative impact on HHI. If all funds’ inferred abilities are sufficiently close, then 



42 
 

HHI is convex in a manager’s inferred ability, and this convexity has positive impact on HHI. 

Our model also shows that when funds’ performance variations are larger, investors rely 

less on the shocks of managers’ relative performances to infer manager abilities, making 

investment flows less sensitive to these shocks. Consequently, the positive (negative) impacts 

of higher relative performances of sufficiently large (small) funds on HHI are mitigated and 

have smaller absolute magnitudes. 

In addition, in our nonlinear framework where sensitivities of gross alphas to manager 

abilities decrease with stock market volatility, we find that higher stock market volatility 

decreases all funds’ sizes. If there are some extremely large funds in the market, then the effect 

of higher stock market volatility on these funds dominates that of other funds, inducing a 

negative aggregate effect on HHI. Linear frameworks of manager abilities and gross alphas 

that are used in the current literature cannot directly model this effect and effects of other 

economic factors on the dynamics of HHI, as we do in our nonlinear frameworks. 

We also show a special case in which unobservable fund manager abilities are constant 

in a linear framework. In this case, as time goes to infinity, managers’ inferred abilities 

converge to their true ability levels and do not change, making both equilibrium fund sizes and 

HHI stay unchanged. All our results hold whether investors are risk neutral or mean-variance 

risk averse and whether there are fund entrances or exits. 

Our empirical results are consistent with our theoretical findings. In particular, the 

flow–net alpha sensitivity significantly decreases with our measures of stock market volatility 

and fund performance variation, implying the effectiveness of these measures. Also, an increase 

in stock market volatility significantly decreases HHI. An increase in the big-fund group’s 

market share, which proxies this group’s relative performance, exerts a significantly positive 

impact on HHI; and a larger performance variation in this group significantly decreases such 

positive impact. An increase in the small-fund group’s market share tends to exert a negative 

effect on HHI, although this effect is insignificant. However, we find evidence that a larger 

performance variation in this group mitigates the effect of the group’s change in market share 

on HHI. 

Moreover, the fluctuation of the empirical HHI over time is consistent with our 

theoretical results in which manager abilities are dynamic and unobservable, but it is 
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inconsistent with a model with constant unobservable manager abilities in a linear framework. 

Also, the fact that the empirical HHI moves more closely with large funds’ market shares than 

the inverse of the number of funds shows the importance of modeling heterogeneous managers, 

where HHI captures managers’ relative inferred abilities, instead of homogeneous managers, 

where HHI is simply the inverse of the number of competitors. In addition, our model explains 

the following literature findings in a compatible way: 1) from the 1990s to early 2000s, new 

entrants who have portfolio holdings similar to those of incumbents decrease fund 

performances and fund flows, 2) outperforming managers are scarce, and 3) HHI decreases 

during this period. 

Our paper sheds light on future research on the dynamics of AFMI concentration. In 

particular, future research in this area can focus on factors that affect fund managers’ relative 

inferred abilities. For example, current literature finds that fund family members can compete 

or cooperate with each other [see, for example, Evans, Prado, and Zambrana (2020), Eisele, 

Nefedova, Parise, and Peijnenburg (2020), and Xu (2022)]. Other literature shows that mutual 

funds compete in different dimensions, such as by trading assets in specific industries and style 

markets (defined by, for example, stock’s total capitalization and book-to-market-ratio), by 

selling fund shares in specific retail market segments (such as direct-sold and broker-sold), by 

concentrating research on stocks that are informationally intense, and by offering unique 

products [see, for example, Kacperczyk, Sialm, and Zheng (2005), Guercio and Reuter (2014), 

Hoberg, Kumar, and Prabhala (2018), Jiang, Shen, Wermers, and Yao (2018), and Kostovetsky 

and Warner (2020)]. Because the methods that fund managers use to compete in the market 

affect managers’ relative inferred abilities, these methods would consequently exert impacts on 

AFMI concentration. Our study also suggests that a nonlinear framework of gross alphas and 

manager abilities can directly model the effects of these factors and offer more insights to the 

market equilibrium. 

Although our paper studies the dynamics of AFMI concentration, our framework can 

be extended to study the dynamics of concentration in other industries in which incomplete 

information exists:  producers’ performance depends on dynamic states that are unobservable 

to customers and producers.  
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Data Appendix 

This section details the definitions and constructions of the variables. 

• 𝐹𝑙𝑜𝑤 ,  is the fund flow, calculated as the difference between the monthly growth rate 

of the fund’s total net asset under management (TNA) and the fund’s monthly net return. 

It is in decimal. 

• 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎 ,  is the fund net alpha, calculated as the fund’s net return in excess of risk-

free return minus the benchmark’s return, which is estimated by an empirical asset 

pricing model on a 24-month rolling-window basis. It is in decimal. 

• 𝑑𝑖𝑓_𝐻𝐻𝐼  is 𝐻𝐻𝐼 − 𝐻𝐻𝐼 , where 𝐻𝐻𝐼  is calculated as the sum of squares of all 

funds’ market shares in month 𝑡. It is in decimal. 

• 𝑑𝑖𝑓_𝑉𝐼𝑋   is 𝑉𝐼𝑋 − 𝑉𝐼𝑋  , where 𝑉𝐼𝑋   is the average value of the daily option-

implied volatility index values in month 𝑡. It is in decimal. 

• 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒  (𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒 ) is the change in market share of the big-

fund group (small-fund group) from time 𝑡 − 1 to 𝑡. It is in decimal. 

• 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟   (𝑃𝑒𝑟𝑓_𝑉𝑎𝑟  ) is the weighted average of the measure of performance 

variation within the big-fund group (small-fund group) at time 𝑡, using funds’ net assets 

under management at this time as weights. A fund’s measure of performance variation, 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟 , , is 𝑂𝑀𝑅2 , , 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑 , , or 𝐺𝑟𝑜𝑠𝑠𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑 , . It is in decimal. 

• 𝑂𝑀𝑅2 ,  is the 1 − 𝑅  of the empirical asset pricing model estimated on a 24-month 

rolling-window basis. It is in decimal. 

• 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑 ,  is the fund net alpha standard deviation, calculated as using the fund 

net alphas in the last 12 months. It is in decimal. 

• 𝐺𝑟𝑜𝑠𝑠𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑 ,  is the fund gross alpha standard deviation, calculated as using the 

fund gross alphas in the last 12 months, where fund gross alpha is fund net alpha plus 

annual fund expense ratio divided by 12. It is in decimal. 

• 𝑁𝑢𝑚𝐺𝑟𝑜𝑤𝑡ℎ  is the change in the number of funds in the market from time 𝑡 − 1 to 𝑡, divided by the number of funds at 𝑡 − 1. It is in decimal. 

• ln𝐴𝑔𝑒 ,  is the natural logarithm of fund age, which is calculated as the number of 

months since the inception of the fund’s oldest share class. 

• ln𝑆𝑖𝑧𝑒 ,  is the natural logarithm of the fund’s total net assets under management (TNA) 

in the December 2020 dollar, which is equal to the original TNA divided by the total 

market capitalization of the U.S. equity market at time 𝑡, and then multiplied by the 
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total market capitalization of the U.S. equity market in December 2020. TNA is in 

billion dollars. 

• 𝐸𝑥𝑝𝑒𝑛𝑠𝑒 ,  is fund expense ratio, the ratio of total investment that shareholders pay for 

the fund’s operating expenses, including 12b-1 fees. It is in decimal. 

• 𝑇𝑢𝑟𝑛𝑂𝑣𝑒𝑟 ,  is fund turnover ratio, calculated as the minimum of aggregated sales and 

aggregated purchases of securities, divided by the average 12-month total net assets 

under management of the fund. It is in decimal. 

• 𝑆𝑡𝑦𝑙𝑒𝐹𝑙𝑜𝑤 ,  is style flow, calculated as the weighted-average flow of the fund class 

based on Lipper fund classification, and is in decimal. 

• 𝐹𝑎𝑚𝐴𝑙𝑝ℎ𝑎 ,   is fund family net alpha, calculated as the weighted average of the 

members’ net alphas excluding the net alphas of fund 𝑖, where the lagged net asset 

under management is the weight. It is in decimal. 

• ln𝐹𝑎𝑚𝑆𝑖𝑧𝑒 ,   is the natural logarithm of family size. Family size is the number of 

active equity funds that have net alpha observations in the family, and it is in integer. 
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Figure 1 U.S. AFMI Concentration Dynamics 

Figure 1 plots the monthly values of variables from January 1993 to December 2020 using the U.S. active equity 
mutual fund data from the Center for Research in Security Prices (CRSP). The two graphs at the top plot the HHI 
and the number of funds in the market, respectively. The two graphs at the bottom plot the market shares of the 
big-fund group and small-fund group, respectively. HHI is the Herfindahl-Hirschman Index, calculated as the sum 
of funds’ market shares squared. The number of funds is counted as the number of the U.S. active equity mutual 
funds that have observations satisfying our criteria. Funds’ market shares are calculated based on their total net 
assets under management. The big-fund group contains the largest five funds in the market, whereas the small-
fund group contains funds that have fund size values from the fifth percentile to the tenth percentile. These two 
groups are redefined each month. The gray areas represent the two recessions, from March 2001 to November 
2001, and from December 2007 to June 2009, respectively. 
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Table 1. Summary Statistics on Variables for Fund-Level Analysis 

Table 1 reports the summary statistics on the variables for our fund-level analysis. Our sample period is from 
January 1990 to December 2020, and we use monthly data. FF5 is the five-factor model developed by Fama and 
French (2015), and FFC4 is the four-factor model developed by Fama and French (1993) and Carhart (1997). We 
estimate the models on a 24-month rolling-window basis, and over time, calculate the 1 − 𝑅  and out-of-sample 
prediction of fund net alphas. The definitions and constructions of all the variables are reported in the Data 
Appendix. 

Variable Observation Mean Standard
deviation

25th 50th 75th

Fund characteristics
Fund flow (decimal) 369589 0.0027 0.8675 -0.0152 -0.0050 0.0068
Fund net return (decimal) 369589 0.0077 0.0624 -0.0191 0.0118 0.0381
Fund size (in 1 billion December 2020 dollars) 369589 4.6323 16.1613 0.2767 0.9473 3.1540
Fund age (number of months) 369589 203.5 171.4 89.0 155.0 250.0
Fund expense (decimal) 369589 0.0117 0.0042 0.0093 0.0114 0.0139
Fund turn over ratio (decimal) 369589 0.7868 0.6987 0.3400 0.6167 1.0200
Style flow (decimal) 369589 -0.0012 0.0103 -0.0068 -0.0024 0.0035
Fund family net alpha (decimal) 369589 -0.0008 0.0670 -0.0070 -0.0011 0.0046
Fund family size (number) 369589 12.1 11.4 4.0 9.0 16.0

Estimates from FF5
Fund net alpha (decimal) 369589 -0.0009 0.0427 -0.0100 -0.0011 0.0076
1 - R2 of the factor model (decimal) 369589 0.0769 0.0746 0.0312 0.0566 0.0977
Fund net alpha standard deviation (decimal) 369589 0.0170 0.0388 0.0093 0.0133 0.0195
Fund gross alpha standard deviation (decimal) 369589 0.0170 0.0388 0.0093 0.0133 0.0195

Estimates from FFC4
Fund net alpha (decimal) 369589 -0.0010 0.0437 -0.0098 -0.0011 0.0074
1 - R2 of the factor model (decimal) 369589 0.0813 0.0763 0.0339 0.0610 0.1037
Fund net alpha standard deviation (decimal) 369589 0.0166 0.0391 0.0092 0.0131 0.0191
Fund gross alpha standard deviation (decimal) 369589 0.0166 0.0391 0.0092 0.0131 0.0191

Market characteristics
VIX (decimal) 336 19.5367 8.0500 13.6060 17.4962 23.4451

Percentile
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Table 2. Flow–Net Alpha Sensitivity, Stock Market Volatility, and Performance Variation 

Table 2 reports the results of the model in Equation (51). The dependent variable is the fund percentage flow, 𝐹𝑙𝑜𝑤, and it is in decimal. The independent variables are lagged by one month. The first three columns report the 
results of the model using the measures of fund performance and performance variation estimated by the FF5 
model, and the last three columns report the results of the model using the measures estimated by the FFC4 model. 
The detailed definitions of the variables are in the Data Appendix. Standard errors that are clustered by fund and 
by year are presented in parentheses. The symbols ***, **, and * represent the 1%, 5%, and 10% significance 
levels, respectively, in a two-tail t-test. 

(1) (2) (3) (4) (5) (6)
NetAlpha 0.3075*** 0.3143*** 0.3143*** 0.4089*** 0.3935*** 0.3935***

(0.0731) (0.0771) (0.0771) (0.0848) (0.0817) (0.0817)
NetAlpha*VIX -0.0017** -0.0021** -0.0021** -0.0017* -0.0021** -0.0021**

(0.0008) (0.0009) (0.0009) (0.0009) (0.0008) (0.0008)
VIX -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
NetAlpha*OMR2 -0.1648*** -0.2035***

(0.0342) (0.0337)
OMR2 0.0040 0.0040

(0.0087) (0.0082)
NetAlpha*NetAlpha_Std -0.0443*** -0.0543***

(0.0102) (0.0109)
NetAlpha_Std 0.0135 0.0132

(0.0135) (0.0129)
NetAlpha*GrossAlpha_Std -0.0443*** -0.0543***

(0.0102) (0.0109)
GrossAlpha_Std 0.0135 0.0132

(0.0135) (0.0129)
NetAlpha*lnSize -0.0069 -0.0053 -0.0053 -0.0074 -0.0075 -0.0075

(0.0050) (0.0059) (0.0059) (0.0056) (0.0065) (0.0065)
NetAlpha*lnAge -0.0280** -0.0344*** -0.0344*** -0.0437*** -0.0469*** -0.0469***

(0.0117) (0.0123) (0.0123) (0.0127) (0.0124) (0.0124)
lnSize -0.0048*** -0.0049*** -0.0049*** -0.0048*** -0.0048*** -0.0048***

(0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007)
lnAge -0.0239*** -0.0239*** -0.0239*** -0.0239*** -0.0239*** -0.0239***

(0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020)
Expense -0.9627*** -0.9680*** -0.9680*** -0.9580*** -0.9628*** -0.9628***

(0.2410) (0.2429) (0.2429) (0.2414) (0.2435) (0.2435)
TurnOver -0.0006 -0.0006 -0.0006 -0.0006 -0.0006 -0.0006

(0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007)
Flow 0.0233 0.0233 0.0233 0.0232 0.0233 0.0233

(0.0182) (0.0182) (0.0182) (0.0181) (0.0182) (0.0182)
StyleFlow 0.4361*** 0.4372*** 0.4372*** 0.4367*** 0.4377*** 0.4377***

(0.0564) (0.0565) (0.0565) (0.0572) (0.0573) (0.0573)
FamAlpha 0.0012 0.0006 0.0006 0.0004 0.0003 0.0003

(0.0016) (0.0020) (0.0020) (0.0026) (0.0026) (0.0026)
lnFamSize -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004

(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010)
Constant 0.1330*** 0.1333*** 0.1333*** 0.1327*** 0.1331*** 0.1331***

(0.0119) (0.0115) (0.0115) (0.0119) (0.0115) (0.0115)
Year fixed effects Yes Yes Yes Yes Yes Yes
Fund fixed effects Yes Yes Yes Yes Yes Yes

Observations 369,589 369,589 369,589 369,589 369,589 369,589
R-squared 0.0451 0.0451 0.0451 0.0454 0.0453 0.0453
Adjusted R-squared 0.0387 0.0387 0.0387 0.0390 0.0389 0.0389

FF5 FFC4
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Table 3. Summary Statistics on Variables for Market-Level Analysis 

Table 3 reports the summary statistics on the variables for our market-level analysis. Our sample period is from 
January 1990 to December 2020, and we use monthly data. HHI is the Herfindahl-Hirschman Index, calculated 
as the sum of market shares squared of funds, and it is in decimal. VIX is the average of daily option-implied 
volatility index values in each month. The big-fund group contains the largest five funds (based on fund size 
values), and the small-fund group contains those with fund size values from the fifth percentile to the tenth 
percentile. FF5 is the five-factor model developed by Fama and French (2015), and FFC4 is the four-factor model 
developed by Fama and French (1993) and Carhart (1997). We estimate these models on a 24-month rolling-
window basis, and over time, calculate the 1 − 𝑅  and the out-of-sample prediction of fund net alphas. The 
definitions and constructions of all the variables are reported in the Data Appendix. 

Variable Observation Mean Standard
deviation

25th 50th 75th

Market characteristics
HHI (decimal) 336 0.0108 0.0019 0.0092 0.0104 0.0115
Change in HHI (decimal) 336 -0.0003 0.0047 -0.0001 0.0000 0.0001
VIX (decimal) 336 19.5367 8.0500 13.6060 17.4962 23.4451
Change in VIX (decimal) 336 0.0303 4.3326 -1.7685 -0.2650 1.1892
Market share of big-fund group (decimal) 336 0.1692 0.0163 0.1594 0.1674 0.1774
Change in market share of big-fund group (decimal) 336 -0.0012 0.0206 -0.0012 -0.0001 0.0010
Market share of small-fund group (decimal) 336 0.0007 0.0001 0.0006 0.0007 0.0007
Change in market share of small-fund group (decimal) 336 -3.50E-07 2.86E-05 -9.75E-06 4.59E-07 1.02E-05
Number of funds (number) 336 1379 374 1219 1405 1727
Growth rate of the number of funds (decimal) 336 0.0198 0.3164 -0.0028 0.0011 0.0072

Estimates from FF5

Big-fund group's 1 - R2 of the factor model (decimal) 336 0.0744 0.0506 0.0313 0.0580 0.1155
Big-fund group's net alpha standard deviation (decimal) 336 0.0092 0.0031 0.0076 0.0082 0.0104
Big-fund group's gross alpha standard deviation (decimal) 336 0.0092 0.0031 0.0076 0.0082 0.0104

Small-fund group's 1 - R2 of the factor model (decimal) 336 0.1111 0.0459 0.0759 0.1065 0.1405
Small-fund group's net alpha standard deviation (decimal) 336 0.0157 0.0058 0.0125 0.0144 0.0195
Small-fund group's gross alpha standard deviation (decimal) 336 0.0155 0.0058 0.0124 0.0142 0.0190

Estimates from FFC4

Big-fund group's 1 - R2 of the factor model (decimal) 336 0.0818 0.0572 0.0357 0.0613 0.1284
Big-fund group's net alpha standard deviation (decimal) 336 0.0092 0.0029 0.0076 0.0087 0.0108
Big-fund group's gross alpha standard deviation (decimal) 336 0.0092 0.0029 0.0076 0.0087 0.0108

Small-fund group's 1 - R2 of the factor model (decimal) 336 0.1165 0.0471 0.0812 0.1117 0.1421
Small-fund group's net alpha standard deviation (decimal) 336 0.0153 0.0057 0.0123 0.0142 0.0183
Small-fund group's gross alpha standard deviation (decimal) 336 0.0151 0.0057 0.0122 0.0141 0.0179

Percentile
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Table 4. Dynamics of HHI, Changes in Stock Market Volatility and Fund Performance, 
and Performance Variation 

Table 4 reports the results of the model in Equation (52). The dependent variable is the change in HHI, 𝑑𝑖𝑓_𝐻𝐻𝐼, 
and it is in decimal. The independent variables are lagged by one month. The columns (2) to (4) report the results 
of the model using the measures of fund performance and performance variation estimated by the FF5 model, and 
columns (5) to (7) report the results of the model using the measures estimated by the FFC4 model. The detailed 
definitions of the variables are in the Data Appendix. The standard errors are presented in parentheses, which are 
estimated by the Newey-West estimator, with the maximum lag of 12 to be considered in the autocorrelation 
structure of the regression error. The symbols ***, **, and * represent the 1%, 5%, and 10% significance levels, 
respectively, in a two-tail t-test. 

(1) (2) (3) (4) (5) (6) (7)
Dif_VIX -0.0002*** -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0001***

(0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Dif_MarketShare B 1.1648*** 1.8136*** 1.8950*** 1.8854*** 1.7348*** 1.8431*** 1.8356***

(0.3545) (0.3655) (0.1312) (0.1323) (0.3926) (0.1166) (0.1179)
Dif_MarketShare S -10.4878 -38.9940 -11.7915 -13.3416 -47.3898* -14.2290 -15.0738

(10.4128) (24.7941) (11.6700) (11.5912) (28.2525) (11.5485) (11.4543)
Dif_MarketShare B *OMR2 B -13.7309*** -11.1934***

(3.3880) (2.9644)
OMR2 B -0.0041 -0.0030

(0.0035) (0.0028)
Dif_MarketShare S *OMR2 S 223.3505* 240.3995*

(128.9604) (136.4108)
OMR2 S -0.0091 -0.0084

(0.0077) (0.0078)
Dif_MarketShare B *NetAlpha_Std B -146.8074*** -142.0496***

(18.4656) (16.9828)
NetAlpha_Std B -0.0039 0.0031

(0.0706) (0.0752)
Dif_MarketShare S *NetAlpha_Std S 1,457.3450* 1,700.5736**

(870.1754) (862.9170)
NetAlpha_Std S -0.0197 -0.0268

(0.0332) (0.0327)
Dif_MarketShare B *GrossAlpha_Std B -146.1784*** -141.6057***

(18.3745) (16.9451)
GrossAlpha_Std B -0.0046 0.0035

(0.0714) (0.0767)
Dif_MarketShare S *GrossAlpha_Std S 1,634.9686* 1,832.8401**

(883.6655) (875.0814)
GrossAlpha_Std S -0.0177 -0.0264

(0.0366) (0.0349)
NumGrowth 0.0764*** 0.0795*** 0.1002*** 0.0999*** 0.0811*** 0.0989*** 0.0986***

(0.0231) (0.0154) (0.0062) (0.0063) (0.0179) (0.0056) (0.0056)
Constant -0.0027 -0.0003 -0.0012* -0.0011* -0.0006 -0.0011* -0.0011*

(0.0017) (0.0018) (0.0006) (0.0006) (0.0020) (0.0006) (0.0006)

Year fixed effects Yes Yes Yes Yes Yes Yes Yes
Observations 336 336 336 336 336 336 336

FF5 FFC4
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Internet Appendix 

This appendix provides the proofs and additional discussions of our theoretical results 

and offers the simulation results. 

Mathematical Proofs and Additional Discussions 

This section provides the proofs of the results in the corresponding sections. 

Proof of Results in Section 2.2 

In the managers’ problems shown in Equation (15), to maximize 𝐴 𝑚 , 𝑞 , − 𝑐 𝑞 , , 

we apply the first-order condition with respect to 𝑞 , , and find the optimal value 𝑞 , ∗ as 

 𝑞 , ∗ = 𝐴 𝑚 ,2𝑐 . (A1) 

The second-order condition −2𝑐 < 0  shows that 𝑞 , ∗  induces a maximum. Substituting 

Equation (A1) into Equation (14) and rearranging, we find the fund 𝑖’ optimal fund sizes as 

 𝑞 ,∗ = 𝐴 𝑚 ,4𝑐 𝑓 . (A2) 

Here we assume that manager 𝑖, 𝑖 = 1, … ,𝑛, sets 𝑓  sufficiently low such that the constraint 0 ≤ 𝑞 , ∗ ≤ 𝑞 ,∗   is automatically satisfied and we do not incorporate this constraint in the 

optimization. 

Q.E.D. 

Proof of Results in Section 2.7 

First, we define the following: 

• mean return vector of the 𝑛 + 1  assets, 𝛍𝐭 , is an (𝑛 + 1) × 1  vector, with 𝜇 , =
,, 𝐴 𝑚 , − ,, − 𝑓 + 𝜇 𝑑𝑡, 𝑖 = 1, … ,𝑛, and 𝜇 , = 𝜇 𝑑𝑡; 

• covariance matrix of the 𝑛 + 1 assets, 𝐐𝐭, is an (𝑛 + 1) × (𝑛 + 1) positive definite 

symmetric matrix, with diagonal elements 𝑄 , = ,, 𝐵 + 𝜎 𝑑𝑡 , 𝑖 = 1, … ,𝑛 , 

𝑄 , = 𝜎 𝑑𝑡, 𝑖 = 𝑛 + 1, and off-diagonal elements 𝑄 , = 𝜎 𝑑𝑡, ∀𝑖 ≠ 𝑗. 
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Then, we have 

 E 𝑑𝑝𝑝 ℱ𝛏 = 𝐯𝐭′𝛍𝐭 (A3) 

 Var 𝑑𝑝𝑝 ℱ𝛏 = 𝐯𝐭′𝐐𝐭𝐯𝐭. (A4) 

Next, we write down the Lagrange function 

 𝐹 (𝐯𝐭, 𝜆 ) = 𝐯𝐭′𝛍𝐭𝐯𝐭′𝐐𝐭𝐯𝐭 + 𝜆 (1 − 𝐯𝐭′𝟏). (A5) 

We later will argue that the condition 0 ≤ 𝑣 , ≤ 1,  ∀𝑡, 𝑖 = 1, … ,𝑛 + 1  is automatically 

satisfied in our model, so it does not affect our optimization process and is not incorporated in 

Equation (A5). First-order conditions generate 

 ∇𝐯𝐭𝐹 (𝐯𝐭∗, 𝜆∗) = (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗) 𝛍𝐭 − (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗) 𝐐𝐭𝐯𝐭∗𝐯𝐭∗′𝛍𝐭𝐯𝐭∗′𝐐𝐭𝐯𝐭∗ − 𝜆∗𝟏= 𝟎 

(A6) 

 ∇ 𝐹 (𝐯𝐭∗, 𝜆∗) = 1 − 𝐯𝐭∗′𝟏 = 𝟎. (A7) 

Multiplying both sides of Equation (A6) by 𝐯𝐭∗′ on the left, we have 

 (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗) 𝐯𝐭∗′𝛍𝐭 − (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗) 𝐯𝐭∗′𝐐𝐭𝐯𝐭∗𝐯𝐭∗′𝛍𝐭𝐯𝐭∗′𝐐𝐭𝐯𝐭∗ = 𝜆∗ = 0. (A8) 

Then, 

 (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗) 𝛍𝐭 − (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗) 𝐐𝐭𝐯𝐭∗𝐯𝐭∗′𝛍𝐭 = 𝟎. (A9) 

The second-order condition is satisfied and omitted here for brevity. Then, 𝐯𝐭∗ is a maximizer. 

Next, we solve 𝐯𝐭∗  explicitly. Define 𝜇∗𝑑𝑡 ≜ 𝐯𝐭∗′𝛍𝐭  and 𝜎 ∗𝑑𝑡 ≜ 𝐯𝐭∗′𝐐𝐭𝐯𝐭∗ , which are the 

portfolio mean return and variance of return at the optimal weight allocations in 𝑑𝑡 , 
respectively. Rearranging Equation (A9), we have 

 𝐐𝐭𝐯𝐭∗ = 𝛍𝐭 𝜎 ∗𝜇∗ . (A10) 

Then, the 𝑖 th element of 𝐐𝐭𝐯𝐭∗  is 𝑣 ,∗ ,, 𝐵 + 𝜎 𝑑𝑡 , for 𝑖 = 1, … , 𝑛 , and 𝜎 𝑑𝑡  for 

𝑖 = 𝑛 + 1 . Also, the 𝑖 th element of 𝛍𝐭 ∗∗   is 
∗∗ ,, 𝐴 𝑚 , − ,, − 𝑓 + 𝜇 𝑑𝑡 , for 𝑖 =1, … ,𝑛  and 

∗∗ 𝑑𝑡  for 𝑖 = 𝑛 + 1 . We have the following relation by dividing the 𝑖 th 
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element for 𝑖 = 1, … ,𝑛 by the last element for both sides of Equation (A10): 

 𝑣 ,∗ 𝑞 ,𝑞 , 𝐵 + 𝜎𝜎 = 𝜎 ∗𝜇∗ 𝑞 ,𝑞 , 𝐴 𝑚 , − 𝑐 𝑞 ,𝑞 , − 𝑓 + 𝜇𝜎 ∗𝜇𝜇∗  (A11) 

for 𝑖 = 1, … ,𝑛. Rearranging the expression above, we have 

 𝑣 ,∗ = 𝑞 ,𝑞 , 𝐴 𝑚 , − 𝑐 𝑞 ,𝑞 , − 𝑓 𝜎𝑞 ,𝑞 , 𝐵 𝜇  (A12) 

for 𝑖 = 1, … ,𝑛. 

Then, funds’ sizes can be expressed as, for 𝑖 = 1, … ,𝑛, 
 𝑞 , = 𝑉𝑣 ,∗ = 𝑉 𝑞 ,𝑞 , 𝐴 𝑚 , − 𝑐 𝑞 ,𝑞 , − 𝑓 𝜎𝑞 ,𝑞 , 𝐵 𝜇 . (A13) 

Substitute the expression above into Equation (44), and rearrange to get 

 𝑓𝑞 , = −𝑞 , 𝐵 𝜇𝑉𝜎 − 𝑐 𝑞 , + 𝑞 , 𝐴 𝑚 , . (A14) 

Manager 𝑖 ’s problem is to maximize 𝑓𝑞 ,   by choosing 𝑞 ,  . Applying the first-order 

condition on the right-hand side of Equation (A14), we have 

 𝑞 ,∗ = 𝐴 𝑚 , 𝑉𝜎2 𝐵 𝜇 + 𝑐 𝑉𝜎 . (A15) 

The second-order condition is − − 2𝑐 < 0 , showing that 𝑞 ,∗  is a maximizer. Then 

substituting 𝑞 ,∗ back to Equation (A13), we have 

 𝑞 ,∗ = 𝐴 𝑚 , 𝑉𝜎4𝑓 𝐵 𝜇 + 𝑐 𝑉𝜎 . (A16) 

We can see that 

 𝑞 ,∗𝑞 ,∗ = 2𝑓𝐴 𝑚 , . (A17) 

We assume that manager 𝑖 sets 𝑓  sufficiently low such that the condition 0 ≤ 𝑞 ,∗ ≤ 𝑞 ,∗  is 
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automatically satisfied and we do not incorporate this constraint in the optimization problem 

in Equation (44). Also, by Equations (A13) and (A16), we have, for 𝑖 = 1, … ,𝑛, 

 𝑣 ,∗ = 𝑞 ,∗𝑉 = 𝐴 𝑚 , 𝜎4𝑓 𝐵 𝜇 + 𝑐 𝑉𝜎 . (A18) 

As 𝑚 , ≥ 𝑚 , ≥ 0  and all other parameters on the right-hand side of Equation (A18) are 

positive, 𝑣 ,∗ , 𝑖 = 1, … ,𝑛 is nonnegative; i.e., investors do not short sell active funds. That is, 

as long as funds provide positive expected net alphas, investors do not short sell them. Also, 

summing up Equation (A18) for 𝑖 = 1, … ,𝑛, we have 

 𝑣 ,∗ = 𝐴 𝑚 ,4𝑓 𝐵 𝜇𝜎 + 𝑐 𝑉 . (A19) 

With a sufficiently large 𝜇  or a sufficiently small 𝜎 , we have ∑ 𝑣 ,∗ ≤ 1. As 𝑣 ,∗ , 𝑖 =1, … ,𝑛 is nonnegative and ∑ 𝑣 ,∗ ≤ 1, we have 𝑣 ,∗ ≤ 1, for 𝑖 = 1, … ,𝑛. With all these 

conditions, we also have 0 ≤ 𝑣 ,∗ ≤ 1; i.e., investors invest part of their wealth into the 

passive benchmark. The intuition is that as long as the passive benchmark portfolio provides 

sufficiently high expected return or sufficiently low risk, investors do not short sell it. These 

results are realistic because in reality, we observe investors invest part of their wealth in active 

funds and another in passive benchmark portfolios. Then, the condition 0 ≤ 𝑣 , ≤ 1,  ∀, 𝑖 =1, … ,𝑛 + 1 is automatically satisfied and we do not incorporate this constraint in solving the 

investors’ optimization problems. 

Q.E.D. 
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Simulation Results 

We use simulation to illustrate the dynamics of HHI. In our following numerical 

analyses, we consider a two-fund AFMI, i.e., 𝑛 = 2, and assume that investors are risk neutral. 

The numerical analyses with mean-variance risk-averse investors are similar, and we omit them 

for brevity. 

We first illustrate how HHI changes with different values of relative inferred manager 

abilities, fund size factors, and sensitivity of gross alphas to abilities. We set 𝑚 , = 1, 𝐴 =1, and 𝑋 = 100. We set the range of 𝑚 ,  as [0, 4]. As 𝑚 , = 1, the value of 𝑚 ,  can be 

regarded as manager 1’s inferred ability relative to manager 2’s. We simulate the values of HHI 

for three cases, 

• Case One:  𝐴 = 𝐴 = 1 and 𝑋 = 𝑋 = 100; 

• Case Two:  𝐴 = 𝐴 = 1 and 𝑋 = 2𝑋 = 200; 

• Case Three:  𝐴 = 2𝐴 = 2 and 𝑋 = 𝑋 = 100. 

Figure A1 illustrates the results. In Case One, the two funds have the same size factor 

and sensitivity of gross alpha to ability. Where 𝑚 ,   is smaller (larger) than one, fund 1’s 

equilibrium size is smaller (larger) than that of fund 2, and the AFMI is concentrated at fund 2 

(fund 1). Then, a higher 𝑚 ,   increases fund 1’s size and makes the AFMI less (more) 

concentrated. The lowest level of 𝐻𝐻𝐼∗  is 0.5 , achieved where 𝑚 , = 1 ; i.e., the two 

managers have the same inferred ability thus the same equilibrium size. The highest 𝐻𝐻𝐼∗ is 1, achieved where 𝑚 , = 0 or 𝑚 , → ∞; i.e., either manager 2 or manager 1 has infinite 

relative ability such that AFMI becomes monopolistic. Moreover, in the figure, we can see that 

where 𝑚 ,  is close to zero (close to four), 𝐻𝐻𝐼∗ is concave in 𝑚 , , as it is more difficult to 

increase 𝐻𝐻𝐼∗  by further decreasing (increasing) 𝑚 ,  . Also, where 𝑚 ,   is close to one, 𝐻𝐻𝐼∗ is convex in 𝑚 , , as it is easier to increase 𝐻𝐻𝐼∗ if 𝑚 ,  has a larger deviation from 

one that makes fund 1’s size deviate farther from fund 2’s size. 

In Case Two, fund 1 has a larger size factor but the same sensitivity of gross alpha to 

ability. Comparing Case Two with Case One, we can see that the graph of Case Two shrinks to 

the left. In particular, where 𝐻𝐻𝐼∗ decreases (increases) with 𝑚 , , at the same 𝑚 ,  level, 𝐻𝐻𝐼∗ has a lower (higher) value. Also, in Case Two, where 𝐻𝐻𝐼∗ is concave (convex) in 
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𝑚 , , 𝐻𝐻𝐼∗ is more sensitive with 𝑚 , . 

In Case Three, fund 1 has a larger sensitivity of gross alpha to ability but the same size 

factor. Because a higher sensitivity of gross alpha to ability has a stronger effect on equilibrium 

fund size than the size factor [by Equation (20), 𝐴  has a power of two whereas 𝑋  has a 

power of one]. The graph of Case Three shrinks more to the left and has larger concavity and 

convexity in the corresponding intervals, compared with Case Two. 

Next, we simulate these two funds’ inferred abilities, 𝑚 ,  and 𝑚 , , and then 𝐻𝐻𝐼∗. 
We discretize our continuous-time processes into discrete-time processes, setting 𝑑𝑡 = Δ𝑡 to 

be one month and 𝑑𝑊 , = Δ𝑊 ,   and 𝑑𝑊 , = Δ𝑊 ,  , to follow a normal distribution of 

mean zero and variance Δ𝑡. We set some of the two funds’ parameter values based on the 

summary statistics of our sample:  for 𝑖 = 1, 2 , 𝑓 = 0.095% , 𝐵 = 4.275% , and 𝑚 , =0.982%. We also set 𝛾 , = 0.0006, 𝑖 = 1, 2. Additionally, we set 𝑐 = 0.0002 and 𝐴 = 1, 𝑖 = 1, 2. We conduct the simulation for two frameworks, one with dynamic abilities and the 

other with constant abilities. In particular, the parameters specific to these two frameworks are 

set as follows. 

• Dynamic Abilities:  for 𝑖 = 1, 2 , 𝑎 , = 0.01 , 𝑎 , = −0.02 , 𝑏 , = 0.02 , and 𝑏 , = 0.01. 

• Constant Abilities:  for 𝑖 = 1, 2, 𝑎 , = 0, 𝑎 , = 0, 𝑏 , = 0, and 𝑏 , = 0. 

We simulate Δ𝑊 ,  and Δ𝑊 ,  as two independent series of increments of Brownian motions 

and use the same set of simulated Δ𝑊 ,  and Δ𝑊 ,  values for both cases. 

We simulate the results for 400 months. Figure A2 plots the simulation results. In both 

frameworks, we can see that, when 𝑚 ,   is farther away from (closer to) 𝑚 ,  , 𝐻𝐻𝐼∗ 
becomes larger (smaller). Also, with constant abilities, the two managers’ inferred abilities 

change little after 250 months. This is because the estimation precisions are very high after 250 

months, making the inferred abilities insensitive to innovation shocks. Consequently, 

equilibrium fund sizes change little after 250 months, making 𝐻𝐻𝐼∗ stable at a value close to 0.90 after 250 months. On the other hand, with dynamic abilities, the two managers’ inferred 

abilities fluctuate greatly over time, even after 250 months. As the estimation precisions are 

low, the inferred abilities are still sensitive to innovation shocks. Consequently, equilibrium 
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fund sizes fluctuate greatly after 250 months, making 𝐻𝐻𝐼∗ volatile after 250 months in the 

interval from 0.50 to 0.75. 
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Figure A1. AFMI Equilibrium HHI and Relative Inferred Abilities 

Figure A1 illustrates the results of an AFMI with two funds, fund 1 and fund 2. The vertical axis is the equilibrium 
AFMI Herfindahl-Hirschman Index, 𝐻𝐻𝐼∗, and the horizontal axis is manager 1’s inferred ability, 𝑚 , . Manager 
2’s inferred ability 𝑚 ,  is set to be one, so that 𝑚 ,  can be regarded as manager 1’s inferred ability relative to 
manager 2’s. In Case One, the two managers have the same size factor, 𝑋 = 𝑋 = 100, and the same sensitivity 
of gross alpha to ability, 𝐴 = 𝐴 = 1 . In Case Two, 𝑋 = 2𝑋 = 200  and 𝐴 = 𝐴 = 1 , whereas in Case 
Three, 𝑋 = 𝑋 = 100 and 𝐴 = 2𝐴 = 2. The solid curve, dashed curve, and dotted dashed curve illustrate the 
results of Case One, Case Two, and Case Three, respectively. 
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Figure A2. AFMI Equilibrium HHI and Inferred Abilities with Dynamic Abilities and 
Constant Abilities 

Figure A2 illustrates the results of an AFMI with two funds, fund 1 and fund 2, with dynamic abilities in the two 
upper subplots and with constant abilities in the two lower subplots, respectively. For each case, on the left-hand 
side, we illustrate the simulated inferred abilities, 𝑚 ,  and 𝑚 , , in blue lines and red stars, respectively. On the 
right-hand side, we illustrate the equilibrium AFMI Herfindahl-Hirschman Index, 𝐻𝐻𝐼∗. We plot these simulation 
results from Month 0 to Month 400. 

 

 


